1
|
Prickett TCR, Espiner EA, Pearson JF. Association of natriuretic peptides and receptor activity with cardio-metabolic health at middle age. Sci Rep 2024; 14:9919. [PMID: 38689031 PMCID: PMC11061163 DOI: 10.1038/s41598-024-60677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024] Open
Abstract
Natriuretic peptides (NP) have multiple actions benefitting cardiovascular and metabolic health. Although many of these are mediated by Guanylyl Cyclase (GC) receptors NPR1 and NPR2, their role and relative importance in vivo is unclear. The intracellular mediator of NPR1 and NPR2, cGMP, circulates in plasma and can be used to examine relationships between receptor activity and tissue responses targeted by NPs. Plasma cGMP was measured in 348 participants previously recruited in a multidisciplinary community study (CHALICE) at age 50 years at a single centre. Associations between bio-active NPs and bio-inactive aminoterminal products with cGMP, and of cGMP with tissue response, were analysed using linear regression. Mediation of associations by NPs was assessed by Causal Mediation Analysis (CMA). ANP's contribution to cGMP far exceed those of other NPs. Modelling across three components (demographics, NPs and cardiovascular function) shows that ANP and CNP are independent and positive predictors of cGMP. Counter intuitively, findings from CMA imply that in specific tissues, NPR1 responds more to BNP stimulation than ANP. Collectively these findings align with longer tissue half-life of BNP, and direct further therapeutic interventions towards extending tissue activity of ANP and CNP.
Collapse
Affiliation(s)
- Timothy C R Prickett
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Eric A Espiner
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - John F Pearson
- Departments of Medicine, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Zhou L, Peng F, Li J, Gong H. Exploring novel biomarkers in dilated cardiomyopathy‑induced heart failure by integrated analysis and in vitro experiments. Exp Ther Med 2023; 26:325. [PMID: 37346398 PMCID: PMC10280324 DOI: 10.3892/etm.2023.12024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 06/23/2023] Open
Abstract
Despite the availability of several effective and promising treatment methods, heart failure (HF) remains a significant public health concern that requires advanced therapeutic strategies and techniques. Dilated cardiomyopathy (DCM) is a crucial factor that contributes to the development and deterioration of HF. The aim of the present study was to identify novel biomarkers and biological pathways to enhance the diagnosis and treatment of patients with DCM-induced HF using weighted gene co-expression network analysis (WGCNA). A total of 24 co-expressed gene modules connected with DCM-induced HF were obtained by WGCNA. Among these, the blue module had the highest correlation with DCM-induced HF (r=0.91; P<0.001) and was enriched in the AGE-RAGE signaling pathway in diabetic complications, the p53 and MAPK signaling pathway, adrenergic signaling in cardiomyocytes, the Janus kinase-STAT signaling pathway and cGMP/PKG signaling. Eight key genes, including secreted protein acidic and rich in cysteine-related modular calcium-binding protein 2 (SMOC2), serpin family A member 3 (SERPINA3), myosin heavy chain 6 (MYH6), S100 calcium binding protein A9 (S100A9), tubulin α (TUBA)3E, TUBA3D, lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE1) and phospholipase C ε1 (PLCE1), were selected as the therapeutic targets of DCM-induced HF based on WGCNA and differentially expressed gene analysis. Immune cell infiltration analysis revealed that the proportion of naive B cells and CD4-activated memory T cells was markedly upregulated in DCM-induced HF tissues compared with tissues from healthy controls. Furthermore, reverse transcription-quantitative PCR in AC16 human cardiomyocyte cells treated with doxorubicin showed that among the eight key genes, only SERPINA3, MYH6, S100A9, LYVE1 and PLCE1 exhibited expression levels identical to those revealed by bioinformatics analysis, suggesting that these genes may be involved in the development of DCM-induced HF.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Fei Peng
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
| | - Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai 201508, P.R. China
- Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
3
|
Tseliou E, Lavine KJ, Wever-Pinzon O, Topkara VK, Meyns B, Adachi I, Zimpfer D, Birks EJ, Burkhoff D, Drakos SG. Biology of myocardial recovery in advanced heart failure with long-term mechanical support. J Heart Lung Transplant 2022; 41:1309-1323. [PMID: 35965183 DOI: 10.1016/j.healun.2022.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022] Open
Abstract
Cardiac remodeling is an adaptive, compensatory biological process following an initial insult to the myocardium that gradually becomes maladaptive and causes clinical deterioration and chronic heart failure (HF). This biological process involves several pathophysiological adaptations at the genetic, molecular, cellular, and tissue levels. A growing body of clinical and translational investigations demonstrated that cardiac remodeling and chronic HF does not invariably result in a static, end-stage phenotype but can be at least partially reversed. One of the paradigms which shed some additional light on the breadth and limits of myocardial elasticity and plasticity is long term mechanical circulatory support (MCS) in advanced HF pediatric and adult patients. MCS by providing (a) ventricular mechanical unloading and (b) effective hemodynamic support to the periphery results in functional, structural, cellular and molecular changes, known as cardiac reverse remodeling. Herein, we analyze and synthesize the advances in our understanding of the biology of MCS-mediated reverse remodeling and myocardial recovery. The MCS investigational setting offers access to human tissue, providing an unparalleled opportunity in cardiovascular medicine to perform in-depth characterizations of myocardial biology and the associated molecular, cellular, and structural recovery signatures. These human tissue findings have triggered and effectively fueled a "bedside to bench and back" approach through a variety of knockout, inhibition or overexpression mechanistic investigations in vitro and in vivo using small animal models. These follow-up translational and basic science studies leveraging human tissue findings have unveiled mechanistic myocardial recovery pathways which are currently undergoing further testing for potential therapeutic drug development. Essentially, the field is advancing by extending the lessons learned from the MCS cardiac recovery investigational setting to develop therapies applicable to the greater, not end-stage, HF population. This review article focuses on the biological aspects of the MCS-mediated myocardial recovery and together with its companion review article, focused on the clinical aspects, they aim to provide a useful framework for clinicians and investigators.
Collapse
Affiliation(s)
- Eleni Tseliou
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Kory J Lavine
- Division of Cardiology, Washington University School of Medicine, St Louis, MO
| | - Omar Wever-Pinzon
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT
| | - Veli K Topkara
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY
| | - Bart Meyns
- Department of Cardiology and Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Iki Adachi
- Division of Cardiac Surgery, Texas Children's Hospital, Houston, TX
| | - Daniel Zimpfer
- Department of Surgery, Division of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Burkhoff
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, NY; Cardiovascular Research Foundation (CRF), New York, NY
| | - Stavros G Drakos
- Division of Cardiovascular Medicine, University of Utah Health, Salt Lake City, UT; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah Health, Salt Lake City, UT.
| |
Collapse
|
4
|
Xu M, Liu X, Li P, Yang Y, Zhang W, Zhao S, Zeng Y, Zhou X, Zeng LH, Yang G. Modified Natriuretic Peptides and their Potential Role in Cancer Treatment. Biomed J 2021; 45:118-131. [PMID: 34237455 PMCID: PMC9133251 DOI: 10.1016/j.bj.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
The natriuretic peptide family (NPs) is a group of natural endocrine hormones, containing a 17-amino acid ring structure connected by disulfide bonds of two cysteines. In this review, the members of the natriuretic peptide family and their corresponding receptors as well as the anti-cancer effects are introduced. Four cardiac hormones of NPs (ANP, VD, KP and LANP) can effectively inhibit the growth of human small cell lung cancer, breast cancer and other tumors and significantly reduce tumor volume in vivo. The in vitro experiments also show that cardiac hormones, CNP and urodilatin can effectively inhibit the growth of most tumor cells. We then further summarized the anti-cancer mechanism of natriuretic peptides. Finally, we introduce several methods that modify natriuretic peptides, leading to enhance their stability and prolong the biological effects of these peptides, which might be helpful for the clinical application in the future. Peptide therapy is a very promising field for cancer treatments since they can induce the death of cancer cells without dramatically affecting normal cells. The synthesis of a useful and stable natriuretic peptide can enhance the effect of cancer treatments and significantly reduce drug resistance and toxicity.
Collapse
Affiliation(s)
- Mengjiao Xu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China; Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Xingzhu Liu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ping Li
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yadong Yang
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyuan Zhang
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Siyu Zhao
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ying Zeng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xile Zhou
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ling-Hui Zeng
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Geng Yang
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
5
|
Messmann R, Dietl A, Wagner S, Domenig O, Jungbauer C, Luchner A, Maier LS, Schopka S, Hirt S, Schmid C, Birner C. Alterations of the renin angiotensin system in human end-stage heart failure before and after mechanical cardiac unloading by LVAD support. Mol Cell Biochem 2020; 472:79-94. [PMID: 32564294 PMCID: PMC7431447 DOI: 10.1007/s11010-020-03787-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 01/06/2023]
Abstract
Heart transplantation is often an unrealizable therapeutic option for end-stage heart failure, which is why mechanical left ventricular assist devices (LVADs) become an increasingly important therapeutic alternative. Currently, there is a lack of information about molecular mechanisms which are influenced by LVADs, particularly regarding the pathophysiologically critical renin angiotensin system (RAS). We, therefore, determined regulation patterns of key components of the RAS and the β-arrestin signaling pathways in left ventricular (LV) tissue specimens from 8 patients with end-stage ischemic cardiomyopathy (ICM) and 12 patients with terminal dilated cardiomyopathy (DCM) before and after LVAD implantation and compared them with non-failing (NF) left ventricular tissue samples: AT1R, AT2R, ACE, ACE2, MasR, and ADAM17 were analyzed by polymerase chain reaction. ERK, phosphorylated ERK, p38, phosphorylated p38, JNK, phosphorylated JNK, GRK2, β-arrestin 2, PI3K, Akt, and phosphorylated Akt were determined by Western blot analysis. Angiotensin I and Angiotensin II were quantified by mass spectrometry. Patients were predominantly middle-aged (53 ± 10 years) men with severely impaired LV function (LVEF 19 ± 8%), when receiving LVAD therapy for a mean duration of 331 ± 317 days. Baseline characteristics did not differ significantly between ICM and DCM patients. By comparing failing with non-failing left ventricles, i.e., before LVAD implantation, a downregulation of AT1R, AT2R, and MasR and an upregulation of ACE, ACE2, GRK, β-arrestin, ERK, PI3K, and Akt were seen. Following LVAD support, then angiotensin I, ACE2, GRK, and β-arrestin were downregulated and AT2R, JNK, and p38 were upregulated. ACE, angiotensin II, AT1R, ADAM17, MasR, ERK, PI3K, and Akt remained unchanged. Some regulation patterns were influenced by the underlying etiology of heart failure, the severity of LV dysfunction at baseline, and the duration of LVAD therapy. Key components of the RAS and β-arrestin signaling pathways were divergently altered in failing left ventricles both before and after LVAD implantation, whereas a remarkable fraction remained unchanged. This indicates a rather incomplete molecular reverse remodeling, whose functional relevance has to be further evaluated.
Collapse
Affiliation(s)
- Rebecca Messmann
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Dietl
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | | | - Carsten Jungbauer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Luchner
- Department of Cardiology, Clinic Barmherzige Brüder, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Schopka
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Hirt
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph Birner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
- Department of Internal Medicine I, Klinikum St. Marien, Amberg, Germany.
| |
Collapse
|
6
|
Liu TH, Chen WH, Chen XD, Liang QE, Tao WC, Jin Z, Xiao Y, Chen LG. Network Pharmacology Identifies the Mechanisms of Action of TaohongSiwu Decoction Against Essential Hypertension. Med Sci Monit 2020; 26:e920682. [PMID: 32187175 PMCID: PMC7102407 DOI: 10.12659/msm.920682] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND TaohongSiwu decoction (THSWT), a traditional herbal formula, has been used to treat cardiovascular and cerebrovascular diseases such as essential hypertension (EH) in China. However, the pharmacological mechanism is not clear. To investigate the mechanisms of THSWT in the treatment of EH, we performed compounds, targets prediction and network analysis using a network pharmacology method. MATERIAL AND METHODS We selected chemical constituents and targets of THSWT according to TCMSP and UniProtKB databases and collected therapeutic targets on EH from Online Mendelian Inheritance in Man (OMIM), Drugbank and DisGeNET databases. The protein-protein interaction (PPI) was analyzed by using String database. Then network was constructed by using Cytoscape_v3.7.1, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID) software. RESULTS The results of our network pharmacology research showed that the THSWT, composed of 6 Chinese herbs, contained 15 compounds, and 23 genes regulated the main signaling pathways related to EH. Moreover, the PPI network based on targets of THSWT on EH revealed the interaction relationship between targets. These core compounds were 6 of the 15 disease-related compounds in the network, kaempferol, quercetin, luteolin, Myricanone, beta-sitosterol, baicalein, and the core genes contained ADRB2, CALM1, HMOX1, JUN, PPARG, and VEGFA, which were regulated by more than 3 compounds and significantly associated with Calcium signaling pathway, cGMP-PKG signaling pathway, cAMP signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and Ras signaling pathway. CONCLUSIONS This network pharmacological study can reveal potential mechanisms of multi-target and multi-component THSWT in the treatment of EH, provide a scientific basis for studying the mechanism.
Collapse
Affiliation(s)
- Tian-Hao Liu
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wei-Hao Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Xu-Dong Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Qiu-Er Liang
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Wen-Cong Tao
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Zhen Jin
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Ya Xiao
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| | - Li-Guo Chen
- Chinese Medicine College, Jinan University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|