1
|
Bahmad HF, Poppiti RJ. Medulloblastoma cancer stem cells: molecular signatures and therapeutic targets. J Clin Pathol 2020; 73:243-249. [PMID: 32034059 DOI: 10.1136/jclinpath-2019-206246] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant primary intracranial neoplasm diagnosed in childhood. Although numerous efforts have been made during the past few years to exploit novel targeted therapies for this aggressive neoplasm, there still exist substantial hitches hindering successful management of MB. Lately, progress in cancer biology has shown evidence that a subpopulation of cells within the tumour, namely cancer stem cells (CSCs), are thought to be responsible for the resistance to most chemotherapeutic agents and radiation therapy, accounting for cancer recurrence. Hence, it is crucial to identify the molecular signatures and genetic aberrations that characterise those CSCs and develop therapies that specifically target them. In this review, we aim to give an overview of the main genetic and molecular cues that depict MB-CSCs and provide a synopsis of the novel therapeutic approaches that specifically target this population of cells to attain enhanced antitumorous effects and therefore overcome resistance to therapy.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Robert J Poppiti
- Arkadi M Rywlin MD Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, Florida, USA .,Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
2
|
Duc NM, Huy HQ. Magnetic Resonance Imaging Features of Common Posterior Fossa Brain Tumors in Children: A Preliminary Vietnamese Study. Open Access Maced J Med Sci 2019; 7:2413-2418. [PMID: 31666838 PMCID: PMC6814486 DOI: 10.3889/oamjms.2019.635] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) nowadays plays an important role in the evaluation of posterior fossa brain tumours in children for appropriate diagnosis, treatment planning, and follow-up. AIM To assess the MRI features of common posterior fossa brain tumours including medulloblastomas, ependymomas, and pilocytic astrocytomas along with the postoperative parameters to contribute the local knowledge to the neuroradiology and neurosurgery fields. METHODS The study was performed at Children's Hospital 02 from January 2016 to June 2019. In this study, all pediatric patients adopted MRI to evaluate the posterior fossa brain tumours' characteristics and then underwent surgery to eradicate the posterior fossa tumours. We retrospectively compared the baseline parameters, MRI parameters, and postoperative parameters among medulloblastomas, ependymomas, and pilocytic astrocytomas. RESULTS There were 62 patients (27 medulloblastomas, 20 ependymomas, and 15 pilocytic astrocytomas) in this research. The main structure of medulloblastomas and ependymomas was predominantly solid, whereas the main structure of pilocytic astrocytomas was superiorly cystic (p < 0.05). Ependymoma tended to extend tumour through foramina of Luschka and Magendie (p < 0.05). Medulloblastomas chiefly showed iso intensity on T2W and FLAIR images meanwhile ependymomas and pilocytic astrocytomas predominantly appeared hyperintensity on T2W and FLAIR images. Medulloblastomas and ependymomas were mostly high intensity on DWI, and low intensity on ADC whereas pilocytic astrocytomas were usually low intensity on DWI and high intensity on ADC. After injecting CE, pilocytic astrocytomas showed a mixed intensity whereas the signal intensity of medulloblastoma and ependymoma on T1CE was generally strong. There were positive correlations between FH diameter and estimated blood loss (r = 0.289, p < 0.05); and surgical time (r = 0.312, p < 0.05). CONCLUSION MRI plays a crucial role in demonstrating the features of posterior fossa brain tumours for appropriate diagnosis of medulloblastomas, ependymomas, and pilocytic astrocytomas. Medulloblastomas are problematic tumours and the clinicians should also take into consideration in cases of larger feet-to-head diameter of tumours to ensure the efficacy and safety surgery for patients.
Collapse
Affiliation(s)
- Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Vietnam
- Department of Radiology, Children’s Hospital 02, Vietnam
| | - Huynh Quang Huy
- Department of Radiology, Pham Ngoc Thach University of Medicine, Vietnam
| |
Collapse
|
3
|
Kuzan-Fischer CM, Guerreiro Stucklin AS, Taylor MD. Advances in Genomics Explain Medulloblastoma Behavior at the Bedside. Neurosurgery 2017; 64:21-26. [PMID: 28899050 DOI: 10.1093/neuros/nyx248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Claudia M Kuzan-Fischer
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ana S Guerreiro Stucklin
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Surgery and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Rico-Varela J, Singh T, McCutcheon S, Vazquez M. EGF as a New Therapeutic Target for Medulloblastoma Metastasis. Cell Mol Bioeng 2015; 8:553-565. [PMID: 26594253 DOI: 10.1007/s12195-015-0395-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor known for its aggressive metastatic potential. Despite the well-documented migration of MB cells to other parts of the brain and spinal column, MB chemotaxis is poorly understood. Herein, we examined the in vitro migratory and cellular responses of MB-derived cells to external signaling of Epidermal Growth Factor (EGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF-BB), and the stromal cell-derived factors 1-alpha (SDF-1). Experiments utilized transwell assays and immunocytochemistry to identify receptor activation in MB migration, and used a microfluidic platform to examine directionality, trajectory, and gradient-dependence of motile cells. Data illustrates that MB-derived cells respond strongly to EGF in a dosage and gradient-dependent manner with increased EGF-R activation, and show that high EGF gradient fields cause an increased number of cells to migrate longer directed distances. Our results provide evidence that EGF and its receptor play an important role than previously documented in MB chemotactic migration than previously documented and should be considered for developing migration-target therapies against MB metastasis.
Collapse
Affiliation(s)
- Jennifer Rico-Varela
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, ST-403D, New York, NY 10031
| | - Tanya Singh
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, ST-403D, New York, NY 10031
| | - Sean McCutcheon
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, ST-403D, New York, NY 10031
| | - Maribel Vazquez
- Department of Biomedical Engineering, The City College of New York, 160 Convent Avenue, ST-403D, New York, NY 10031
| |
Collapse
|
5
|
Ordóñez R, Gallo-Oller G, Martínez-Soto S, Legarra S, Pata-Merci N, Guegan J, Danglot G, Bernheim A, Meléndez B, Rey JA, Castresana JS. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells. PLoS One 2014; 9:e113105. [PMID: 25392930 PMCID: PMC4231109 DOI: 10.1371/journal.pone.0113105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Collapse
Affiliation(s)
- Raquel Ordóñez
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Soledad Martínez-Soto
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Sheila Legarra
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A. Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| |
Collapse
|
6
|
|
7
|
Anti-EGFR therapy combined with neuromedin B receptor blockade induces the death of DAOY medulloblastoma cells. Childs Nerv Syst 2013; 29:2145-50. [PMID: 24092425 DOI: 10.1007/s00381-013-2290-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 01/24/2023]
Abstract
PURPOSE Medulloblastoma is the most common malignant childhood brain tumor for which the development of new molecularly targeted therapies is needed. Novel therapeutic targets under investigation include growth factor receptors. Here, we show that the combined inhibition of the epidermal growth factor receptor (EGFR) and neuromedin B receptor (NMBR, BB1) results in increased cell death in human medulloblastoma cell lines. METHODS DAOY and D283 human medulloblastoma cells were treated with human recombinant neuromedin B (NMB, an NMBR agonist), the NMBR antagonist BIM-23127, the anti-EGFR monoclonal antibody cetuximab, or BIM-23127 combined with cetuximab. Cell death was examined with trypan blue cell counting. RESULTS Both cell lines expressed mRNA for EGFR, NMB, and NMBR detected by reverse transcriptase polymerase chain reaction. Cetuximab at 10 μg/ml significantly reduced the number of DAOY cells, but did not affect D283 cells. NMB and BIM-23127 did not change cell number when used alone. However, cetuximab, at a dose that did not have an effect by itself, was able to reduce the number of DAOY cells when combined with BIM-23127. CONCLUSION These results provide preliminary evidence that NMBR blockade can potentiate the antitumor effect of anti-EGFR therapy in medulloblastoma.
Collapse
|