1
|
Tylicka M, Matuszczak E, Kamińska J, Modzelewska B, Koper-Lenkiewicz OM. Proteasomes and Ubiquitin C-Terminal Hydrolase L1 as Biomarkers of Tissue Damage and Inflammatory Response to Different Types of Injury-A Short Review. Life (Basel) 2025; 15:413. [PMID: 40141757 PMCID: PMC11944130 DOI: 10.3390/life15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The proteasomal system of protein degradation is crucial for various cellular processes, including transduction of signals and differentiation of cells. Proteasome activity rises after various traumatic stressors such as hyperoxia, radiation, or oxidative damage. Removal of damaged proteins is essential to provide the necessary conditions for cell repair. Several studies report the activation of the proteasomal degradation system after thermal injury, CNS injury, abdominal trauma, ischemia-reperfusion injury, and possible clinical implications of the use of proteasome inhibitors. It is important to highlight the distinct and crucial roles of UCHL1, 26S, and 20S proteasome subunits as biomarkers. UCHL1 appears to be particularly relevant for identifying brain and neuronal damage and in advancing the diagnosis and prognosis of traumatic brain injury (TBI) and other neurological conditions. Meanwhile, the 26S and 20S proteasomes may serve as markers for peripheral tissue damage. This differentiation enhances our understanding and ability to target specific types of tissue damage in clinical settings.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| |
Collapse
|
2
|
Zhao D, Sha BX, Zeng LF, Liang GH, Huang HT, Pan JK, Liu J, Zhao S. Exploring and analyzing two aging related genes FPR1 and UCHL1 and their potential molecular mechanisms in aggravating lumbar disc herniation. J Orthop Surg Res 2024; 19:841. [PMID: 39695855 PMCID: PMC11657882 DOI: 10.1186/s13018-024-05257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/10/2024] [Indexed: 12/20/2024] Open
Abstract
The aim of this research was to investigate dysregulated pivotal genes in individuals with lumbar disc herniation (LDH) to identify potential diagnostic biomarkers and treatment targets for LDH. Key aging-related genes in LDH were identified through multiple methods. Two dysregulated key genes (FPR1 and UCHL1) were finally identified, showing high diagnostic value in both training and external validation cohorts. Dysregulated expression of these hub genes established a detrimental cycle in LDH by promoting inflammatory response, immune infiltration, and aging progression. This highlights significant pathological alterations caused by these hub genes in LDH pathogenesis. The current study developed a novel genetic signature associated with aging that accurately diagnoses LDH while characterizing biological alterations in patients with this condition. And this genetic signature holds promise as an indicator to assist clinical decision-making. Moreover, identification of FPR1 and UCHL1 as pivotal genes presents potential prospects for targeted therapeutic interventions for LDH.
Collapse
Affiliation(s)
- Di Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Bang-Xin Sha
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ling-Feng Zeng
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Gui-Hong Liang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - He-Tao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jian-Ke Pan
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Jun Liu
- Bone and Joint Research Team of Degeneration and Injury, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
- Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Enginering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
- The Fifth Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuai Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
3
|
Malhotra AK, Ide K, Salaheen Z, Mahood Q, Cunningham J, Hutchison J, Guerguerian AM. Acute Fluid Biomarkers for Diagnosis and Prognosis in Children with Mild Traumatic Brain Injury: A Systematic Review. Mol Diagn Ther 2024; 28:169-187. [PMID: 38133736 DOI: 10.1007/s40291-023-00685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Fluid biomarkers have the potential to improve the accuracy of diagnosis and prognosis in children with mild traumatic brain injury. Our primary objective was to assess the diagnostic and prognostic utility of acute blood and fluid biomarkers in children with mild traumatic brain injury. METHODS We performed a systematic review of the published literature in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Fluid biomarker studies assessing pediatric mild traumatic brain injury diagnosis or prognosis were included if blood or fluids were sampled within 24 h of injury. RESULTS Thirty-two studies involving 4743 patients were included comprising 25 diagnostic studies and ten prognostic studies with three studies assessing both diagnosis and prognosis. Sixteen of the 25 diagnostic studies reported the area under the receiver operating characteristic curve (AUC) for predicting abnormal computed tomography scans of the head; S100 calcium binding protein B (S100B, N = 6 studies, AUC range 0.67-1.00), glial fibrillary acidic protein (N = 5, AUC range 0.41-0.85), ubiquitin C-terminal hydrolase (N = 3, AUC 0.59 and 0.83), neuron specific enolase (N = 1, AUC 0.99), total tau (N = 1, AUC 0.65), and interleukin-6 (N = 1, AUC 0.61). In four of the ten prognostic studies, increased acute serum S100B levels, tumor necrosis factor-α, or interleukin-8 were associated with post-concussive symptoms or fatigue from 3 to 12 months post-injury. CONCLUSIONS The largest amount of evidence supported the potential use of S100B, glial fibrillary acidic protein, and UCH-L1, but there was mixed accuracy for diagnosis and prognostication for all biomarkers in pediatric mTBI.
Collapse
Affiliation(s)
- Armaan K Malhotra
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Kentaro Ide
- Department of Critical Care and Anesthesia, The National Center for Child Health and Development, Tokyo, Japan
| | - Zaid Salaheen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Quenby Mahood
- Reference Library, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jessie Cunningham
- Reference Library, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jamie Hutchison
- Department of Critical Care Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Neuroscience and Mental Health Research Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| | - Anne-Marie Guerguerian
- Department of Critical Care Medicine, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Neuroscience and Mental Health Research Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Reiners JC, Leopold L, Hallebach V, Sinske D, Meier P, Amoroso M, Langgartner D, Reber SO, Knöll B. Acute stress modulates the outcome of traumatic brain injury-associated gene expression and behavioral responses. FASEB J 2023; 37:e23218. [PMID: 37779443 DOI: 10.1096/fj.202301035r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Psychological stress and traumatic brain injury (TBI) result in long-lasting emotional and behavioral impairments in patients. So far, the interaction of psychological stress with TBI not only in the brain but also in peripheral organs is poorly understood. Herein, the impact of acute stress (AS) occurring immediately before TBI is investigated. For this, a mouse model of restraint stress and TBI was employed, and their influence on behavior and gene expression in brain regions, the hypothalamic-pituitary-adrenal (HPA) axis, and peripheral organs was analyzed. Results demonstrate that, compared to single AS or TBI exposure, mice treated with AS prior to TBI showed sex-specific alterations in body weight, memory function, and locomotion. The induction of immediate early genes (IEGs, e.g., c-Fos) by TBI was modulated by previous AS in several brain regions. Furthermore, IEG upregulation along the HPA axis (e.g., pituitary, adrenal glands) and other peripheral organs (e.g., heart) was modulated by AS-TBI interaction. Proteomics of plasma samples revealed proteins potentially mediating this interaction. Finally, the deletion of Atf3 diminished the TBI-induced induction of IEGs in peripheral organs but left them largely unaltered in the brain. In summary, AS immediately before brain injury affects the brain and, to a strong degree, also responses in peripheral organs.
Collapse
Affiliation(s)
| | - Laura Leopold
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Vera Hallebach
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Daniela Sinske
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Improper Proteostasis: Can It Serve as Biomarkers for Neurodegenerative Diseases? Mol Neurobiol 2022; 59:3382-3401. [PMID: 35305242 DOI: 10.1007/s12035-022-02775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
Cells synthesize new proteins after multiple molecular decisions. Damage of existing proteins, accumulation of abnormal proteins, and basic requirement of new proteins trigger protein quality control (PQC)-based alternative strategies to cope against proteostasis imbalance. Accumulation of misfolded proteins is linked with various neurodegenerative disorders. However, how deregulated components of this quality control system and their lack of general mechanism-based long-term changes can serve as biomarkers for neurodegeneration remains largely unexplored. Here, our article summarizes the chief findings, which may facilitate the search of novel and relevant proteostasis mechanism-based biomarkers associated with neuronal disorders. Understanding the abnormalities of PQC coupled molecules as possible biomarkers can help to determine neuronal fate and their contribution to the aetiology of several nervous system disorders.
Collapse
|
6
|
UCHL1 and Proteasome in Blood Serum in Relation to Dietary Habits, Concentration of Selected Antioxidant Minerals and Total Antioxidant Status among Patients with Alzheimer's Disease. J Clin Med 2022; 11:jcm11020412. [PMID: 35054106 PMCID: PMC8779407 DOI: 10.3390/jcm11020412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. It is the most common form of dementia among the elderly population. So far, no effective methods of its treatment have been found. Research to better understand the mechanism of pathology may provide new methods for early diagnosis. This, in turn, could enable early intervention that could slow or halt disease progression and improve patients' quality of life. Therefore, minimally invasive markers, including serum-based markers, are being sought to improve the diagnosis of AD. One of the important markers may be the concentration of UCHL1 and the proteasome in the blood serum. Their concentration can be affected by many factors, including eating habits. This study was conducted in 110 patients with early or moderate AD, with a mean age of 78.0 ± 8.1 years. The patients were under the care of the Podlasie Center of Psychogeriatrics and the Department of Neurology (Medical University of Białystok, Poland). The control group consisted of 60 healthy volunteers, matched for gender and age. The concentration of UCHL1 and the 20S proteasome subunit were measured by surface plasmon resonance imaging (SPRI). In addition, a nutritional interview was conducted with patients with AD, which assessed the frequency of consumption of 36 groups of products. In the group of patients with AD, compared to the control group, we showed a significantly higher concentration of UCHL1 (56.05 vs. 7.98 ng/mL) and the proteasome (13.02 vs. 5.72 µg/mL). Moreover, we found a low negative correlation between UCHL1 and the proteasome in the control group, and positive in the AD group. The analysis of eating habits showed that the consumption of selected groups of products may affect the concentration of the tested components, and therefore may have a protective effect on AD.
Collapse
|
7
|
Concept and application of circulating proteasomes. Exp Mol Med 2021; 53:1539-1546. [PMID: 34707192 PMCID: PMC8568939 DOI: 10.1038/s12276-021-00692-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022] Open
Abstract
Proteostasis is primarily a function of protein synthesis and degradation. Although the components and processes involved in intracellular proteostasis have been studied extensively, it is apparent that extracellular proteostasis is equitably crucial for the viability of organisms. The 26S proteasome, a unique ATP-dependent proteolytic complex in eukaryotic cells, contributes to the majority of intracellular proteolysis. Accumulating evidence suggests the presence of intact 20S proteasomes in the circulatory system (c-proteasomes), and similar to other plasma proteins, the levels of these c-proteasomes may vary, potentially reflecting specific pathophysiological conditions. Under normal conditions, the concentration of c-proteasomes has been reported to be in the range of ~0.2-2 μg/mL, which is ~2-4-fold lower than that of functional plasma proteins but markedly higher than that of signaling proteins. The characterization of c-proteasomes, such as their origin, structure, role, and clearance, has been delayed mainly due to technical limitations. In this review, we summarize the current perspectives pertaining to c-proteasomes, focusing on the methodology, including our experimental understanding. We believe that once the pathological relevance of c-proteasomes is revealed, these unique components may be utilized in the diagnosis and prognosis of diverse human diseases.
Collapse
|
8
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
10
|
Matuszczak E, Weremijewicz A, Koper-Lenkiewicz OM, Kamińska J, Hermanowicz A, Dębek W, Komarowska M, Tylicka M. Effects of combined Pulsed Dye Laser and Fractional CO 2 Laser treatment of burn scars and correlation with plasma levels of collagen type I, MMP-2 and TIMP-1. Burns 2020; 47:1342-1351. [PMID: 33358398 DOI: 10.1016/j.burns.2020.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Hypertrophic burn scars remain a significant burden for patients and a challenge for clinicians. THE AIM Assessement of the efficacy of combined Pulsed Dye Laser and Ablative Fractional CO2 Laser therapy on hyperthophic scars and correlation with plasma levels of MMP-2, TIMP-1 and alpha-1 type I collagen. PATIENTS AND METHODS Twenty five pediatric subjects were enrolled into the study. Control group consisted of age-matched subjects admitted for surgical repair of inguinal hernia. For the assessment of the results of laser treatment we used the Vancouver scar scale (VSS), and Patient-Observer Scar Assessment Scale (POSAS). We also correlated clinical results with plasma levels of MMP-2, TIMP-1 and alpha-1 type I collagen. RESULTS All subjects reported the laser treatment resulted in improvement and were somewhat satisfied or very satisfied with their experience. No adverse events were reported. The levels of MMP-2, TIMP-1 and alpha-1 type I collagen in our patients with scars before laser threatment were higher in comparison to controls. We also found statistically significant decrease in the levels of MMP-2, TIMP-1 and alpha-1 type I collagen after laser treatment of burn scars CONCLUSIONS: Our study clearly shows that combined CO2-AFL treatment for burn scars improve texture, colour, function and alleviate pruritus. We believe that decrease in the levels of MMP-2, TIMP-1 and alpha-1 type I collagen after laser treatment of burn scars, reflects reduced dynamic of scar.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Poland; Biophysics Department, Medical University of Bialystok, Poland.
| | | | | | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Wojciech Dębek
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Marta Komarowska
- Pediatric Surgery Department, Medical University of Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Poland
| |
Collapse
|
11
|
Mannix R, Levy R, Zemek R, Yeates KO, Arbogast K, Meehan WP, Leddy J, Master C, Mayer AR, Howell DR, Meier TB. Fluid Biomarkers of Pediatric Mild Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2020; 37:2029-2044. [DOI: 10.1089/neu.2019.6956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rachel Levy
- Medical College of Georgia, Augusta, Georgia, USA
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, and Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristy Arbogast
- Division of Emergency Medicine, Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William P. Meehan
- Micheli Center for Sports Injury Prevention, Division of Sports Medicine and Department of Pediatrics Boston Children's Hospital, Boston, Massachusetts, USA
| | - John Leddy
- UBMD Department of Orthopedics and Sports Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Christina Master
- Sports Medicine and Performance Center, Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew R. Mayer
- Mind Research Network/LBERI and Departments of Psychology, Neurology, and Psychiatry, University of New Mexico, Albuquerque, New Mexico, USA
| | - David R. Howell
- Children's Hospital Colorado Sports Medicine Center and Department of Orthopedics University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Timothy B. Meier
- Departments of Neurosurgery, Cell Biology, Neurobiology and Anatomy, and Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Tylicka M, Matuszczak E, Hermanowicz A, Dębek W, Karpińska M, Kamińska J, Koper-Lenkiewicz OM. BDNF and IL-8, But Not UCHL-1 and IL-11, Are Markers of Brain Injury in Children Caused by Mild Head Trauma. Brain Sci 2020; 10:brainsci10100665. [PMID: 32987792 PMCID: PMC7598703 DOI: 10.3390/brainsci10100665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to check whether the plasma levels of brain-derived neurotrophic factor (BDNF), interleukin-8 (IL-8), interleukin-11 (IL-11) and ubiquitin C-terminal hydrolase L1 (UCHL-1) change in children with mild head trauma (N = 29) compared to controls (N = 13). Protein concentration in children with mild head trauma (12 children with mild concussion without loss of consciousness and 17 children with severe concussion and loss of consciousness) and the control group were measured by means of the Enzyme-Linked Immunosorbent Assay (ELISA) method. IL-8 and BDNF concentration was statistically higher in the group of children with mild head trauma (9.89 pg/mL and 2798.00 pg/mL, respectively) compared to the control group (7.52 pg/mL and 1163.20 pg/mL, respectively). BDNF concentration was significantly higher in children with severe concussion and loss of consciousness (3826.00 pg/mL) than in the control group. None of the tested proteins differed significantly between children with mild concussion without loss of consciousness and children with severe concussion and loss of consciousness. BDNF and IL-8 may be sensitive markers of brain response to mild head trauma in children. The lack of statistical differences for BDNF and IL-8 between children with mild or severe concussion could indicate that their elevated levels may not result from significant structural brain damage but rather reflect a functional disturbance.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2a, 15-089 Białystok, Poland;
- Correspondence: (M.T.); (O.M.K.-L.)
| | - Ewa Matuszczak
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Adam Hermanowicz
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Wojciech Dębek
- Department of Pediatric Surgery and Urology, Medical University of Białystok, Waszyngtona 17, 15-274 Białystok, Poland; (E.M.); (A.H.); (W.D.)
| | - Maria Karpińska
- Department of Biophysics, Medical University of Białystok, Mickiewicza 2a, 15-089 Białystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Waszyngtona 15A, 15-269 Białystok, Poland;
- Correspondence: (M.T.); (O.M.K.-L.)
| |
Collapse
|
13
|
Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochem Funct 2020; 38:533-540. [PMID: 32207552 DOI: 10.1002/cbf.3527] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin C-terminal hydrolase 1 (UCHL1) is an enzyme unique for its multiple activity - both ligase and hydrolase. UCHL1 was first identified as an abundant protein found in the brain and testes, however its expression is not limited to the neuronal compartment. UCHL1 is also highly expressed in carcinomas of various tissue origins, including those from brain, lung, breast, kidney, colon, prostate, pancreas and mesenchymal tissues. Loss-of-function studies and an inhibitor for UCHL1 confirmed the importance of UCHL1 for cancer therapy. So far biological significance of UCHL1 was described in the following processes: spermatogenesis, oncogenesis, angiogenesis, cell proliferation and differentiation in skeletal muscle, inflammation, tissue injury, neuronal injury and neurodegeneration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
14
|
Proteasome Activity and C-Reactive Protein Concentration in the Course of Inflammatory Reaction in Relation to the Type of Abdominal Operation and the Surgical Technique Used. Mediators Inflamm 2018; 2018:2469098. [PMID: 30405319 PMCID: PMC6204193 DOI: 10.1155/2018/2469098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
Surgical tissue damage and the accompanying inflammatory response lead to proteasome activation, initiation of damaged protein degradation, and induction of acute-phase inflammatory response. The aim of this study was to investigate the rate of change in proteasome chymotrypsin-like (ChT-L) activity and C-reactive protein concentration depending on the degree of tissue damage and their correlation with prealbumin concentrations in children before and after abdominal surgery. This experimental study included children who underwent abdominal surgery between 2015 and 2017. Plasma prealbumin concentrations and C-reactive protein levels (CRP) were determined by standard biochemical laboratory procedures. Proteasome activity was assessed using a Suc-Leu-Leu-Val-Tyr-AMC peptide substrate. Elevation of plasma proteasome activity was noted in children after laparoscopic and open abdominal surgeries. However, 20S proteasome activity in children undergoing conventional open surgery was significantly higher (P < 0.05) than in patients subjected to laparoscopy. At the same time, an increase in the CRP level was observed. However, there was no correlation between C-reactive protein concentrations and the type of abdominal surgery while there was a correlation observed in the case of proteasomes. Proteasome activity correlates with the degree of surgical tissue damage and prealbumin concentrations. More invasive surgery leads to a stronger activation of the proteasome involved in removing proteins that were damaged due to the surgical procedure. Proteasomes are more specific markers because there is a correlation between proteasome activity and the type of abdominal surgery in contrast to C-reactive protein concentrations which are not different in response to surgery performed in regard to ovarian cysts or cholelithiasis.
Collapse
|
15
|
Matuszczak E, Tylicka M, Dębek W, Sankiewicz A, Gorodkiewicz E, Hermanowicz A. Concentration of Proteasome in the Blood Plasma of Children with Acute Appendicitis, Before and After Surgery, and Its Correlation with CRP. World J Surg 2018; 42:2259-2264. [PMID: 29264727 DOI: 10.1007/s00268-017-4407-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The determination of 20S proteasome concentration in the blood plasma of children with appendicitis and its correlation with CRP. DESIGN AND SETTING Thirty-one children with acute appendicitis, were randomly included into the study (age 5 years up to 17 years, mean age 11.5 + 1 years). PARTICIPANTS There were 17 girls and 14 boys. Eighteen healthy, age-matched subjects, admitted for planned surgeries served as controls. Exclusion criteria were: severe preexisting infections, immunological or cardiovascular diseases that required long-term medication, and complicated cases of appendicitis with perforation of appendix and/or peritonitis. MAIN OUTCOME MEASURES The 20S proteasome concentrations in the blood plasma of patients with acute appendicitis were highest before the surgery and were above the range of concentrations measured in controls, and the difference was statistically significant. RESULTS The 20S proteasome concentration measured 24 and 72 h after the operation, slowly decreased over time, and still did not reach the normal range, when compared with the concentration measured in controls (p < 0.05). CONCLUSIONS 20S proteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation. The method of operation-classic open appendectomy, or laparoscopic appendectomy, does not influence the general trend in 20S proteasome concentration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland.
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | - Wojciech Dębek
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| | - Anna Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Ewa Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Waszyngtona 17, 15-274, Bialystok, Poland
| |
Collapse
|
16
|
Blood biomarkers in paediatric mild traumatic brain injury: a systematic review. Neurosci Biobehav Rev 2018; 87:206-217. [DOI: 10.1016/j.neubiorev.2018.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/09/2018] [Accepted: 02/09/2018] [Indexed: 12/15/2022]
|
17
|
Matuszczak E, Weremijewicz A, Komarowska M, Sankiewicz A, Markowska D, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the Plasma of Pediatric Patients With Moderate and Major Burns, and Its Correlation With Proteasome and UCHL1 Measured by SPR Imaging Biosensors. J Burn Care Res 2018. [DOI: 10.1093/jbcr/iry011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Artur Weremijewicz
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Marta Komarowska
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | - Anna Sankiewicz
- Department of Electrochemistry, University of Bialystok, Poland
| | - Diana Markowska
- Department of Electrochemistry, University of Bialystok, Poland
| | - Wojciech Debek
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| | | | - Robert Milewski
- Department of Statistics, Medical University of Bialystok, Poland
| | - Adam Hermanowicz
- Department of Pediatric Surgery, Medical University of Bialystok, Poland
| |
Collapse
|
18
|
Matuszczak E, Sankiewicz A, Debek W, Gorodkiewicz E, Milewski R, Hermanowicz A. Immunoproteasome in the blood plasma of children with acute appendicitis, and its correlation with proteasome and UCHL1 measured by SPR imaging biosensors. Clin Exp Immunol 2017; 191:125-132. [PMID: 28940383 DOI: 10.1111/cei.13056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to determinate the immunoproteasome concentration in the blood plasma of children with appendicitis, and its correlation with circulating proteasome and ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). Twenty-seven children with acute appendicitis, managed at the Paediatric Surgery Department, were included randomly into the study (age 2 years 9 months up to 14 years, mean age 9·5 ± 1 years). There were 10 girls and 17 boys; 18 healthy, age-matched subjects, admitted for planned surgeries served as controls. Mean concentrations of immunoproteasome, 20S proteasome and UCHL1 in the blood plasma of children with appendicitis before surgery 24 h and 72 h after the appendectomy were higher than in the control group. The immunoproteasome, 20S proteasome and UCHL1 concentrations in the blood plasma of patients with acute appendicitis were highest before surgery. The immunoproteasome, 20S proteasome and UCHL1 concentration measured 24 and 72 h after the operation decreased slowly over time and still did not reach the normal range (P < 0·05). There was no statistical difference between immunoproteasome, 20S proteasome and UCHL1 concentrations in children operated on laparoscopically and children after classic appendectomy. The immunoproteasome concentration may reflect the metabolic response to acute state inflammation, and the process of gradual ebbing of the inflammation may thus be helpful in the assessment of the efficacy of treatment. The method of operation - classic open appendectomy or laparoscopic appendectomy - does not influence the general trend in immunoproteasome concentration in children with appendicitis.
Collapse
Affiliation(s)
- E Matuszczak
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - A Sankiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - W Debek
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - E Gorodkiewicz
- Electrochemistry Department, University of Bialystok, Bialystok, Poland
| | - R Milewski
- Statistics Department, Medical University of Bialystok, Bialystok, Poland
| | - A Hermanowicz
- Paediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Tylicka M, Matuszczak E, Karpińska M, Hermanowicz A, Dębek W, Ostrowska H. Proteasome and C-reactive protein inflammatory response in children undergoing shorter and longer lasting laparoscopic cholecystectomy. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:610-616. [PMID: 29022764 DOI: 10.1080/00365513.2017.1385839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Operations of varying duration cause the release of a number of inflammatory mediators, in particular cytokines which lead to proteasome and acute-phase reactions. The purpose of this novel human study, was to characterize inflammatory response in children undergoing laparoscopic cholecystectomy, by analyzing changes in selected inflammatory mediators: C-reactive protein concentration and circulating 20S proteasome activity following surgical injury and to correlate them with the duration of the surgical procedure. Plasma C-reactive protein concentration (CRP) was determined by standard biochemical laboratory procedures. Proteasome activity in the plasma of children was assessed using Suc-Leu-Leu-Val-Tyr-AMC peptide substrate. Statistically significant increase in the plasma proteasome activity and C-reactive protein concentration, was noted (p < .05) in children after laparoscopic cholecystectomy. We found the correlation between the 20S proteasome activity and the length of the procedure. In children undergoing longer lasting laparoscopic cholecystectomy the proteasome activity was much higher than in patients having shorter surgical procedure. The CRP concentration and 20S proteasome activity significantly increase after surgery, but only 20S proteasome activity correlate with the length of the surgery. This may confirm that CRP is only an indicator of pathological state, while the function of the proteasomes is more complex because of their participation in the processes of repair and wound healing, and in the removal of damaged proteins.
Collapse
Affiliation(s)
- Marzena Tylicka
- a Department of Biophysics , Medical University of Białystok , Białystok , Poland
| | - Ewa Matuszczak
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Maria Karpińska
- a Department of Biophysics , Medical University of Białystok , Białystok , Poland
| | - Adam Hermanowicz
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Wojciech Dębek
- b Department of Pediatric Surgery , Medical University of Białystok , Białystok , Poland
| | - Halina Ostrowska
- c Department of Biology , Medical University of Białystok , Białystok , Poland
| |
Collapse
|