1
|
Chikara RK, Jahromi S, Tamilia E, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Electromagnetic source imaging predicts surgical outcome in children with focal cortical dysplasia. Clin Neurophysiol 2023; 153:88-101. [PMID: 37473485 PMCID: PMC10528204 DOI: 10.1016/j.clinph.2023.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of electromagnetic source imaging (EMSI) in localizing spikes and predict surgical outcome in children with drug resistant epilepsy (DRE) due to focal cortical dysplasia (FCD). METHODS We retrospectively analyzed magnetoencephalography (MEG) and high-density (HD-EEG) data from 23 children with FCD-associated DRE who underwent intracranial EEG and surgery. We localized spikes using equivalent current dipole (ECD) fitting, dipole clustering, and dynamical statistical parametric mapping (dSPM) on EMSI, electric source imaging (ESI), and magnetic source imaging (MSI). We calculated the distance from the seizure onset zone (DSOZ) and resection (DRES). We estimated receiver operating characteristic (ROC) curves with Youden's index (J) to predict outcome. RESULTS EMSI presented shorter DSOZ (15.18 ± 9.06 mm) and DRES (8.56 ± 6.24 mm) compared to ESI (DSOZ: 25.04 ± 16.20 mm, p < 0.009; DRES: 18.88 ± 17.30 mm, p < 0.03) and MSI (DSOZ: 23.37 ± 8.98 mm, p < 0.03; DRES: 15.51 ± 10.11 mm, p < 0.02) for clustering in patients with good outcome. Clustering showed shorter DSOZ and DRES compared to ECD fitting and dSPM (p < 0.05). EMSI had higher performance as outcome predictor (J = 70.63%) compared to ESI (J = 41.27%) and MSI (J = 33.33%) for clustering. CONCLUSIONS EMSI provides superior localization and improved predictive performance than individual modalities. SIGNIFICANCE EMSI can help the surgical planning and facilitate the localization of epileptogenic foci.
Collapse
Affiliation(s)
- Rupesh Kumar Chikara
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Saeed Jahromi
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve M Stufflebeam
- Athinoula Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Neuroscience Research, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
2
|
Santos MV, Garcia CAB, Hamad APA, Costa UT, Sakamoto AC, Dos Santos AC, Machado HR. Clinical and Surgical Approach for Cerebral Cortical Dysplasia. Adv Tech Stand Neurosurg 2023; 48:327-354. [PMID: 37770690 DOI: 10.1007/978-3-031-36785-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The present article describes pathophysiological and clinical aspects of congenital malformations of the cerebral tissue (cortex and white matter) that cause epilepsy and very frequently require surgical treatment. A particular emphasis is given to focal cortical dysplasias, the most common pathology among these epilepsy-related malformations. Specific radiological and surgical features are also highlighted, so a thorough overview of cortical dysplasias is provided.
Collapse
Affiliation(s)
- Marcelo Volpon Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil.
- Department of Surgery and Anantomy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, SP, Brazil.
| | - Camila Araujo Bernardino Garcia
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Andrade Hamad
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Ursula Thome Costa
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Americo Ceiki Sakamoto
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio Carlos Dos Santos
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| | - Helio Rubens Machado
- Center for Pediatric Epilepsy Surgery (CIREP), Ribeirão Preto Medical School, University Hospital, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143:2874-2894. [PMID: 32779696 PMCID: PMC7586092 DOI: 10.1093/brain/awaa174] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
Collapse
Affiliation(s)
| | - Ana Filipa Geraldo
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| | - Norbert Utz
- Department of Pediatric Radiology, HELIOS Klinikum Krefeld, Germany
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi Milano, Italy
| | - Filippo Arrigoni
- Department of Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Richard J Leventer
- Department of Neurology Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
4
|
Alhilani M, Tamilia E, Ricci L, Ricci L, Grant PE, Madsen JR, Pearl PL, Papadelis C. Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia. Clin Neurophysiol 2020; 131:734-743. [PMID: 32007920 DOI: 10.1016/j.clinph.2019.12.408] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 12/04/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To localize the seizure onset zone (SOZ) and irritative zone (IZ) using electric source imaging (ESI) on intracranial EEG (iEEG) and assess their clinical value in predicting epilepsy surgery outcome in children with focal cortical dysplasia (FCD). METHODS We analyzed iEEG data from 25 children with FCD-associated medically refractory epilepsy (MRE) who underwent surgery. We performed ESI on ictal onset to localize SOZ (ESI-SOZ) and on interictal discharges to localize IZ (ESI-IZ). We tested whether resection of ESI-SOZ and ESI-IZ predicted good surgical outcome (Engel 1). We further compared the prediction performance of ESI-SOZ and ESI-IZ to those of SOZ and IZ defined using conventional methods, i.e. by identifying iEEG-contacts showing ictal onsets (conventional-SOZ) or being the most interictally active (conventional-IZ). RESULTS The proximity of ESI-SOZ (p = 0.043, odds-ratio = 3.9) and ESI-IZ (p = 0.011, odds-ratio = 7.04) to resection has higher effect on patients' outcome than proximity of conventional-SOZ (p = 0.17, odds-ratio = 1.7) and conventional-IZ (p = 0.038, odds-ratio = 2.6). Resection of ESI-SOZ and ESI-IZ presented higher discriminative power in predicting outcome (68% and 60%) than conventional-SOZ and conventional-IZ (48% and 53%). CONCLUSIONS Localizing SOZ and IZ via ESI on iEEG offers higher predictive value compared to conventional-iEEG interpretation. SIGNIFICANCE iEEG-ESI may help surgical planning and facilitate prognostic assessment of children with FCD-associated MRE.
Collapse
Affiliation(s)
- Michel Alhilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; The Hillingdon Hospital NHS Foundation Trust, London, UK
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Ricci
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Laura Ricci
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
5
|
Hur YJ, Kim AJ, Nordli DR. MRI supersedes ictal EEG when other presurgical data are concordant. Seizure 2017; 53:18-22. [DOI: 10.1016/j.seizure.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022] Open
|