1
|
Zheng G, Sedlacek AJ, Aiken AC, Feng Y, Watson TB, Raveh-Rubin S, Uin J, Lewis ER, Wang J. Long-range transported North American wildfire aerosols observed in marine boundary layer of eastern North Atlantic. ENVIRONMENT INTERNATIONAL 2020; 139:105680. [PMID: 32272293 DOI: 10.1016/j.envint.2020.105680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Wildfire is a major source of biomass burning aerosols, which greatly impact Earth climate. Tree species in North America (NA) boreal forests can support high-intensity crown fires, resulting in elevated injection height and longer lifetime (on the order of months) of the wildfire aerosols. Given the long lifetime, the properties of aged NA wildfire aerosols are required to understand and quantify their effects on radiation and climate. Here we present comprehensive characterization of climatically relevant properties, including optical properties and cloud condensation nuclei (CCN) activities of aged NA wildfire aerosols, emitted from the record-breaking Canadian wildfires in August 2017. Despite the extreme injection height of ~12 km, some of the wildfire plumes descended into the marine boundary layer in the eastern North Atlantic over a period of ~2 weeks, owing to the dry intrusions behind mid-latitude cyclones. The aged wildfire aerosols have high single scattering albedos at 529 nm (ω529; 0.92-0.95) while low absorption Ångström exponents (Åabs) at 464 nm/648 nm (0.7-0.9). In comparison, Åabs of fresh/slightly aged ones are typically 1.4-3.5. This low Åabs indicates a nearly complete loss of brown carbon, likely due to bleaching and/or evaporation, during the long-range transport. The nearly complete loss suggests that on global average, direct radiative forcing of BrC may be minor. Combining Mie calculations and the measured aerosol hygroscopicity, volatility and size distributions, we show that the high ω529 and low Åabs values are best explained by an external mixture of non-absorbing organic particles and absorbing particles of large BC cores (>~110 nm diameter) with thick non-absorbing coatings. The accelerated descent of the wildfire plume also led to strong increase of CCN concentration at the supersaturation levels representative of marine low clouds. The hygroscopicity parameter, κCCN, of the aged wildfire aerosols varies from 0.2 to 0.4, substantially lower than that of background marine boundary layer aerosols. However, the high fraction of particles with large diameter (i.e., within accumulation size ranges, ~100-250 nm) compensates for the low values of κ, and as a result, the aged NA wildfire aerosols contribute more efficiently to CCN population. These results provide direct evidence that the long-range transported NA wildfires can strongly influence CCN concentration in remote marine boundary layer, therefore the radiative properties of marine low clouds. Given the expected increases of NA wildfire intensity and frequency and regular occurrence of dry intrusion following mid-latitude cyclones, the influence of NA wildfire aerosols on CCN and clouds in remote marine environment need to be further examined.
Collapse
Affiliation(s)
- Guangjie Zheng
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO, USA; Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Arthur J Sedlacek
- Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Allison C Aiken
- Earth System Observations, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yan Feng
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Thomas B Watson
- Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Shira Raveh-Rubin
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Janek Uin
- Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ernie R Lewis
- Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jian Wang
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO, USA; Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
2
|
Development of a Front Identification Scheme for Compiling a Cold Front Climatology of the Mediterranean. CLIMATE 2019. [DOI: 10.3390/cli7110130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this work is the development of an automated and objective identification scheme of cold fronts in order to produce a comprehensive climatology of Mediterranean cold fronts. The scheme is a modified version of The University of Melbourne Frontal Tracking Scheme (FTS), to take into account the particular characteristics of the Mediterranean fronts. We refer to this new scheme as MedFTS. Sensitivity tests were performed with a number of cold fronts in the Mediterranean using different threshold values of wind-related criteria in order to identify the optimum scheme configuration. This configuration was then applied to a 10-year period, and its skill was assessed against synoptic surface charts using statistic metrics. It was found that the scheme performs well with the dynamic criteria employed and can be successfully applied to cold front identification in the Mediterranean.
Collapse
|