1
|
Sreepada A, Khasanov R, Elkrewi EZ, de la Torre C, Felcht J, Al Abdulqader AA, Martel R, Hoyos-Celis NA, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease. Front Mol Neurosci 2025; 17:1504424. [PMID: 39872605 PMCID: PMC11770682 DOI: 10.3389/fnmol.2024.1504424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10; and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Enas Zoheer Elkrewi
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Judith Felcht
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Richard Martel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicolás Andrés Hoyos-Celis
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Kaiserslautern, Germany
| | | |
Collapse
|
2
|
Shrinivasamurthy M, Benakanal SV, Kakanahalli N. The Study of Clinical Phenotypes and Analysis of Mutations in L1 Syndrome. Ann Neurosci 2025; 32:38-46. [PMID: 40026328 PMCID: PMC11869245 DOI: 10.1177/09727531231185224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/06/2023] [Indexed: 03/05/2025] Open
Abstract
Background L1CAM protein plays a crucial role during early development and mutations in L1CAM cause L1 syndrome. L1 syndrome demonstrates a highly variable presentation within and between families. The clinical symptoms of L1 syndrome include mental retardation, hydrocephalus, spasticity, aphasia, and adducted thumb. Mutations in L1CAM gene were found to affect structurally essential key residues in extracellular region of L1 leading to changes in protein binding properties. In most cases, these mutations create unexpected phenotypes which need to be understood thoroughly. Purpose The L1 syndrome patients were identified by various phenotypes like mental retardation, hydrocephalus, aphasia, spasticity, adducted thumb, etc., and the patients or mental retardation (MR) children who had more than three symptoms. This study aimed to screen mutations in multiple exons by Sanger sequencing. Methods The present study employed primers which are designed for specific exons of L1CAM gene to amplify and sequence the amplified product to detect the mutations in L1 syndrome patients by the Sanger sequencing. Chi-square test was used to determine the mutation detection rate with the number of L1 syndrome phenotypes and several in silico programs were used to investigate potential effects of the variants. Results The nine different mutations in six patients. The mutation detection rate was high (83.33%) in patients with more than one L1 syndrome phenotype and in patients with more than one affected member in a family compared to patients with single phenotypes and negative family history (16.6%). Conclusion The mutation detection rate was related to the presence of typical L1 syndrome phenotypes and the family history. Screening of L1CAM gene mutations in the Indian population is much needed to analyze the mutations and understand the mechanism underlying L1 disease. The present study has identified some novel mutations which are implicated in alterations in various biological functions during development leading to pathogenesis of L1 syndrome.
Collapse
Affiliation(s)
- Madhan Shrinivasamurthy
- Department of Applied Zoology, Kuvempu University, Jnanasahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| | - Shreeshail V Benakanal
- Department of Paediatrics, Shivamogga Institute of Medical Sciences, Shivamogga, Karnataka, India
| | - Nagaraj Kakanahalli
- Department of Applied Zoology, Kuvempu University, Jnanasahyadri, Shankaraghatta, Shivamogga, Karnataka, India
| |
Collapse
|
3
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Ahmed RR, Medhat AM, Hamdy GM, Effat LK, Abdel-Hamid MS, Abdel-Salam GM. X-Linked Hydrocephalus with New L1CAM Pathogenic Variants: Review of the Most Prevalent Molecular and Phenotypic Features. Mol Syndromol 2023; 14:283-292. [PMID: 37766829 PMCID: PMC10521243 DOI: 10.1159/000529545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The underlying molecular defects of congenital hydrocephalus are heterogeneous and many isolated forms of hydrocephalus remain unsolved at the molecular level. Congenital hydrocephalus in males associated with agenesis of the corpus callosum is a notable characteristic of L1CAM gene which is by far the most common genetic etiology of congenital hydrocephalus. Methods and Results Sequencing of the L1CAM gene on 25 male patients/fetuses who had been presented with hydrocephalus revealed 6 patients and two fetuses with different hemizygous pathogenic variants. Our study identified 4 novel variants and 4 previously reported. The detection rate was 32%, and all the variants were shown to be maternally inherited. Nonsense variants were detected in 3 patients, while missense variants were detected in 2 patients. Frameshift, silent, and splicing variant, each was detected in 1 patient. The clinical manifestations of the patients are in line with those frequently observed including communicating hydrocephalus and agenesis of the corpus callosum. Moreover, rippled ventricles with subdural collection and asymmetry of ventricles after shunt operation were seen in 1 patient and 2 patients, respectively. In addition, abnormal basal ganglia were found in 4 patients which seems to be an additional distinct new finding. We also describe a patient with novel nonsense variant with the rare association of Hirschsprung's disease. This patient displayed additionally multiple porencephalic cysts and encephalomalacia secondary to hemorrhage due to repeated infections after shunt operation. The patients with the missense variants showed long survival, while those with truncating variants showed poor prognosis. Conclusion This report adds knowledge of novel pathogenic variants to the L1CAM variant database. Furthermore, we evaluated the clinical and imaging data of these patients.
Collapse
Affiliation(s)
- Rania R. Ahmed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Amina M. Medhat
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Germine M. Hamdy
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Laila K.E. Effat
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Giza, Egypt
| | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Wang R, Chen H, Wang X, Huang S, Xie A, Wu X. Prenatal diagnosis of a nonsense mutation in the L1CAM gene resulting in congenital hydrocephalus: A case report and literature review. Exp Ther Med 2021; 22:1416. [PMID: 34676009 PMCID: PMC8524657 DOI: 10.3892/etm.2021.10807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Congenital hydrocephalus is frequently caused by mutations in the L1 cell adhesion molecule (L1CAM) gene. The purpose of the present study was to identify possible causes of fetal hydrocephalus in a Chinese family. The samples from the parents and the hydrocephalic fetus were collected. Whole-exome sequencing and in-depth mutation analysis were performed. The identified variant, c.1267C>T.(p.Q423X), is situated on exon 11 of L1CAM gene (chromosome X:153134975). The fetus was confirmed to be hemizygous for the nonsense mutation and the mother was a heterozygous carrier. The mutation turns a glutamine into a premature stop codon at amino acid position 423. In conclusion, in the present study, a nonsense mutation in the L1CAM gene was identified during the prenatal diagnosis of a congenital hydrocephalic fetus from a Chinese family. The diagnosis highlighted the necessity of genetic screening for prenatal diagnosis.
Collapse
Affiliation(s)
- Rongyue Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hua Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xiaona Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shiyuan Huang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Ailan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Xinmei Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
6
|
Diposarosa R, Bustam N, Sahiratmadja E, Susanto P, Sribudiani Y. Literature review: enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung's disease. Heliyon 2021; 7:e07308. [PMID: 34195419 PMCID: PMC8237298 DOI: 10.1016/j.heliyon.2021.e07308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 01/13/2023] Open
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system (ENS) derived from neural crest cells (NCCs), which affects their migration, proliferation, differentiation, or preservation in the digestive tract, resulting in aganglionosis in the distal intestine. The regulation of both NCCs and the surrounding environment involves various genes, signaling pathways, transcription factors, and morphogens. Therefore, changes in gene expression during the development of the ENS may contribute to the pathogenesis of HSCR. This review discusses several mechanisms involved in the development of ENS, confirming that deviant genetic and epigenetic patterns, such as DNA methylation, histone modification, and microRNA (miRNA) regulation, can contribute to the development of neurocristopathy. Specifically, the epigenetic regulation of miRNA expression and its relationship to cellular interactions and gene activation through various major pathways in Hirschsprung's disease will be discussed.
Collapse
Affiliation(s)
- R. Diposarosa
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - N.A. Bustam
- Department of Surgery, Division of Pediatric Surgery, Dr. Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Edhyana Sahiratmadja
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P.S. Susanto
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Y. Sribudiani
- Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center of Medical Genetics, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
7
|
Gauntner TD, Karumuri M, Guzman MA, Starnes SE, Besmer S, Pinz H, Braddock SR, Andreone TL. Hirschsprung Disease in an Infant with L1 syndrome: Report of a New Case and a novel L1CAM variant. Clin Case Rep 2021; 9:1518-1523. [PMID: 33768880 PMCID: PMC7981724 DOI: 10.1002/ccr3.3816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/24/2020] [Indexed: 11/09/2022] Open
Abstract
L1syndrome is an X-linked disorder manifesting with congenital hydrocephalus, adducted thumbs and spasticity. There are rare cases of L1 syndrome and coincident Hirschsprung disease, with mutations in the L1CAM gene thought to underlie both. We present a novel pathogenic L1CAM variant in someone with L1 syndrome and Hirschsprung disease.
Collapse
Affiliation(s)
| | - Manasa Karumuri
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Miguel A. Guzman
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Sara E. Starnes
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Sherri Besmer
- Division of Pediatric PathologyDepartment of PathologySaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Hailey Pinz
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Genetics, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Stephen R. Braddock
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Genetics, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| | - Teresa L. Andreone
- Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Division of Pediatric Critical Care, Department of PediatricsSaint Louis University School of MedicineSt. LouisMOUSA
- Saint Louis University School of MedicineSt. LouisMOUSA
| |
Collapse
|
8
|
Kostouros A, Koliarakis I, Natsis K, Spandidos DA, Tsatsakis A, Tsiaoussis J. Large intestine embryogenesis: Molecular pathways and related disorders (Review). Int J Mol Med 2020; 46:27-57. [PMID: 32319546 PMCID: PMC7255481 DOI: 10.3892/ijmm.2020.4583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The large intestine, part of the gastrointestinal tract (GI), is composed of all three germ layers, namely the endoderm, the mesoderm and the ectoderm, forming the epithelium, the smooth muscle layers and the enteric nervous system, respectively. Since gastrulation, these layers develop simultaneously during embryogenesis, signaling to each other continuously until adult age. Two invaginations, the anterior intestinal portal (AIP) and the caudal/posterior intestinal portal (CIP), elongate and fuse, creating the primitive gut tube, which is then patterned along the antero‑posterior (AP) axis and the radial (RAD) axis in the context of left‑right (LR) asymmetry. These events lead to the formation of three distinct regions, the foregut, midgut and hindgut. All the above‑mentioned phenomena are under strict control from various molecular pathways, which are critical for the normal intestinal development and function. Specifically, the intestinal epithelium constitutes a constantly developing tissue, deriving from the progenitor stem cells at the bottom of the intestinal crypt. Epithelial differentiation strongly depends on the crosstalk with the adjacent mesoderm. Major molecular pathways that are implicated in the embryogenesis of the large intestine include the canonical and non‑canonical wingless‑related integration site (Wnt), bone morphogenetic protein (BMP), Notch and hedgehog systems. The aberrant regulation of these pathways inevitably leads to several intestinal malformation syndromes, such as atresia, stenosis, or agangliosis. Novel theories, involving the regulation and homeostasis of intestinal stem cells, suggest an embryological basis for the pathogenesis of colorectal cancer (CRC). Thus, the present review article summarizes the diverse roles of these molecular factors in intestinal embryogenesis and related disorders.
Collapse
Affiliation(s)
- Antonios Kostouros
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki
| | | | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion
| |
Collapse
|
9
|
Guo D, Shi Y, Jian W, Fu Y, Yang H, Guo M, Yong W, Chen G, Deng H, Qin Y, Liao W, Yao R. A novel nonsense mutation in the L1CAM gene responsible for X-linked congenital hydrocephalus. J Gene Med 2020; 22:e3180. [PMID: 32128973 DOI: 10.1002/jgm.3180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Congenital hydrocephalus is a descriptive diagnosis of symptoms, that are present for numerous reasons, including chromosomal disorders, genetic mutations, intrauterine infection and hemorrhage, amongst other factors. Mutation of L1CAM gene is the most frequent cause of congenital hydrocephalus, contributing to approximately 30% of X-linked congenital hydrocephalus. METHODS In the present study, we used whole-exome sequencing and Sanger sequencing to investigate an aborted male fetus present with severe congenital hydrocephalus at 24 weeks of gestation, whose mother had a history of two previous voluntary terminations of pregnancies as a result of hydrocephalus. Magnetic resonance imaging, an autopsy and electron microscopy were performed and the phenotypic changes were described. RESULTS Whole-exome sequencing in the fetus, as well as variant segregation analysis, revealed a novel maternally derived hemizygous nonsense mutation (c.2865G>A; p. Y955*) in exon 21 of the L1CAM gene (NM_000425.4). Severe hydrocephalus was observed along with marked dilatation of lateral ventricles. An electron micrograph of the surface of lateral ventricle walls revealed a lack of ependymal cilia. CONCLUSION The present study suggests that L1CAM mutation screening should be considered for a male fetus with isolated hydrocephalus, especially with a family history, which could facilitate prenatal diagnosis in a subsequent pregnancy.
Collapse
Affiliation(s)
- Dewei Guo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenyan Jian
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yimei Fu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yang
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manhui Guo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Obstetrical & Gynecological Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjing Yong
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Chen
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huan Deng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Medical Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Liao
- Department of Medical Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruojin Yao
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Fetal Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Yang W, Chen SC, Lai JY, Ming YC, Chen JC, Chen PL. Distinctive genetic variation of long-segment Hirschsprung's disease in Taiwan. Neurogastroenterol Motil 2019; 31:e13665. [PMID: 31240788 DOI: 10.1111/nmo.13665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is a congenital disorder with the absence of myenteric and submucosal ganglion cells within distal gut. Due to multigenic inheritance and interactions, we employed next-generation sequencing (NGS) to investigate genetic backgrounds of long-segment HSCR (L-HSCR) in Taiwan. METHODS Genomic DNA extracted from peripheral blood of L-HSCR patients was subjected to capture-based NGS, based on a 31-gene panel. The variants with allele frequency <0.05 and predicted by computational methods as deleterious were further validated by Sanger sequencing in patients and their family as well to tell de novo from inherited variants. RESULTS Between 2015/04 and 2018/05, this study enrolled 23 L-HSCR patients, including 15 (65.2%) sporadic cases and 8 (34.8%) familial patients in 4 different families. Six sporadic and seven familial cases showed possible harmful variants across eight different genes, accounting for an overall detection rate of 56.5%. These variants mainly resided in SEMA3C, followed by RET, NRG1, and NTRK1. Three sporadic and 2 familial cases exhibited strong pathogenic variants as a deletional frameshift or stop codon in RET, L1CAM or NRG1. In a HSCR family, the father passed on a pathogenic RET frameshift to two daughters; however, only one developed HSCR. CONCLUSION Using NGS, we disclosed deleterious mutations such as a frameshift or stop codon in either familial or sporadic patients. Our cases with isolated L-HSCR or even total colonic aganglionosis appeared to exhibit complex patterns of inheritance and incomplete penetrance even in families with the same genetic variants, reflecting the possible effects of environmental factors and genetic modifiers.
Collapse
Affiliation(s)
- Wendy Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Jin-Yao Lai
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Ching Ming
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, College of Medicine, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan.,Departments of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Departments of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
12
|
Opperman K, Moseley-Alldredge M, Yochem J, Bell L, Kanayinkal T, Chen L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics 2015; 199:497-509. [PMID: 25488979 PMCID: PMC4317657 DOI: 10.1534/genetics.114.169581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023] Open
Abstract
The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function.
Collapse
Affiliation(s)
- Karla Opperman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - John Yochem
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tony Kanayinkal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
13
|
Chidsey BA, Baldwin EE, Toydemir R, Ahles L, Hanson H, Stevenson DA. L1CAM whole gene deletion in a child with L1 syndrome. Am J Med Genet A 2014; 164A:1555-8. [PMID: 24668863 DOI: 10.1002/ajmg.a.36474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/31/2013] [Indexed: 11/08/2022]
Abstract
L1 syndrome is a group of overlapping, X-linked disorders caused by mutations in L1CAM. Clinical phenotypes within L1 syndrome include X-linked hydrocephalus with stenosis of the aqueduct of sylvius (HSAS); mental retardation, adducted thumbs, shuffling gait, and aphasia (MASA) syndrome; spastic paraplegia type 1; and agenesis of the corpus callosum. Over 200 mutations in L1CAM have been reported; however, only a few large gene deletions have been observed. We report on a 4-month-old male with a de novo whole gene deletion of L1CAM presenting with congenital hydrocephalus, aqueductal stenosis, and adducted thumbs. Initial failure of L1CAM gene sequencing suggested the possibility of a whole gene deletion of L1CAM. Further investigation through chromosome microarray analysis showed a 62Kb deletion encompassing the first exon of the PDZD4 gene and the entire L1CAM gene. Investigations into genotype-phenotype correlations have suggested that mutations leading to truncated or absent L1 protein cause more severe forms of L1 syndrome. Based on the presentation of the proband and other reported patients with whole gene deletions, we provide further evidence that L1CAM whole gene deletions result in L1 syndrome with a severe phenotype, deletions of PDZD4 do not cause additional manifestations, and that X-linked nephrogenic diabetes insipidus reported in a subset of patients with large L1CAM deletions results from the loss of AVPR2.
Collapse
Affiliation(s)
- Brandalyn A Chidsey
- Integrated Oncology and Genetic Services, ARUP Laboratories, Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
14
|
Alves MM, Sribudiani Y, Brouwer RWW, Amiel J, Antiñolo G, Borrego S, Ceccherini I, Chakravarti A, Fernández RM, Garcia-Barcelo MM, Griseri P, Lyonnet S, Tam PK, van Ijcken WFJ, Eggen BJL, te Meerman GJ, Hofstra RMW. Contribution of rare and common variants determine complex diseases-Hirschsprung disease as a model. Dev Biol 2013; 382:320-9. [PMID: 23707863 DOI: 10.1016/j.ydbio.2013.05.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022]
Abstract
Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common 'low penetrant' variants in combination with rare or private 'high penetrant' variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development.
Collapse
Affiliation(s)
- Maria M Alves
- Department of Clinical Genetics, Dr. Molewaterplein, 50, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pan ZW, Li JC. Advances in molecular genetics of Hirschsprung's disease. Anat Rec (Hoboken) 2012; 295:1628-38. [PMID: 22815266 DOI: 10.1002/ar.22538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 12/23/2022]
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cells to fully colonize the gut during embryonic development. It is characterized by the absence of the enteric ganglia in a variable length of the intestine. Substantial progress has been made in understanding the genetic basis of HSCR with the help of advanced genetic analysis techniques and animal models. More than 11 genes have been found to be involved in the pathogenesis of HSCR. The RET gene is the most important susceptibility gene involved in HSCR with both coding and non- coding sequence mutations. Due to phenotypic diversity and genetic complexity observed in HSCR, mutational analysis has limited practical value in genetic counseling and clinical practice. In this review, we discuss the progress that has been made in understanding the molecular genetics of HSCR and summarize the currently identified genes as well as interactions between pathways and gene-modifying loci in HSCR.
Collapse
Affiliation(s)
- Zhi-Wen Pan
- Institute of Cell Biology, Zhejiang University Medical School, 388 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | |
Collapse
|
16
|
Takenouchi T, Nakazawa M, Kanemura Y, Shimozato S, Yamasaki M, Takahashi T, Kosaki K. Hydrocephalus with Hirschsprung disease: Severe end of X-linked hydrocephalus spectrum. Am J Med Genet A 2012; 158A:812-5. [DOI: 10.1002/ajmg.a.35245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/26/2011] [Indexed: 01/14/2023]
|
17
|
Fernández RM, Núñez-Torres R, García-Díaz L, de Agustín JC, Antiñolo G, Borrego S. Association of X-linked hydrocephalus and Hirschsprung disease: Report of a new patient with a mutation in the L1CAM gene. Am J Med Genet A 2012; 158A:816-20. [DOI: 10.1002/ajmg.a.35244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/26/2011] [Indexed: 11/08/2022]
|
18
|
Xu Y, Ye H, Shen Y, Xu Q, Zhu L, Liu J, Wu JY. Dscam mutation leads to hydrocephalus and decreased motor function. Protein Cell 2011; 2:647-55. [PMID: 21904980 DOI: 10.1007/s13238-011-1072-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/30/2011] [Indexed: 11/28/2022] Open
Abstract
The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscam ( del17 ) mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.
Collapse
Affiliation(s)
- Yiliang Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Fernández RM, Núñez-Torres R, González-Meneses A, Antiñolo G, Borrego S. Novel association of severe neonatal encephalopathy and Hirschsprung disease in a male with a duplication at the Xq28 region. BMC MEDICAL GENETICS 2010; 11:137. [PMID: 20860806 PMCID: PMC2955569 DOI: 10.1186/1471-2350-11-137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 09/22/2010] [Indexed: 01/17/2023]
Abstract
Background Hirschsprung disease (HSCR) is a neurocristopathy characterized by the absence of parasympathetic intrinsic ganglion cells in the submucosal and myenteric plexuses along a variable portion of the intestinal tract. In approximately 18% of the cases HSCR also presents with multiple congenital anomalies including recognized syndromes. Methods A combination of MLPA and microarray data analysis have been undertaken to refine a duplication at the Xq28 region. Results In this study we present a new clinical association of severe neonatal encephalopathy (Lubs syndrome) and HSCR, in a male patient carrying a duplication at the Xq28 region which encompasses the MECP2 and L1CAM genes. Conclusions While the encephalopathy has been traditionally attributed to the MECP2 gene duplication in patients with Lubs syndrome, here we propose that the enteric phenotype in our patient might be due to the dosage variation of the L1CAM protein, together with additional molecular events not identified yet. This would be in agreement with the hypothesis previously forwarded that mutations in L1CAM may be involved in HSCR development in association with a predisposing genetic background.
Collapse
Affiliation(s)
- Raquel M Fernández
- Unidad de Gestión Clínica de Genética, Reproducción y Medicina Fetal, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | |
Collapse
|
20
|
Chen X, Huang X, Li B, Zhao Z, Jiang L, Huang C, Lu Y. Changes in neural dendrites and synapses in rat somatosensory cortex following neonatal post-hemorrhagic hydrocephalus. Brain Res Bull 2010; 83:44-8. [PMID: 20600680 DOI: 10.1016/j.brainresbull.2010.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/15/2010] [Accepted: 06/20/2010] [Indexed: 02/04/2023]
Abstract
Neonatal post-hemorrhagic hydrocephalus is associated with cognitive decline and a serious deterioration in the patient's quality of life. The underlying impairments to neurons are not well understood. Here, we used the method described by Cherian et al. to construct a model of hydrocephalus after intra-ventricular hemorrhage and then observed the subsequent pathological changes in the morphology of neurons labeled by enhanced green fluorescent proteins (EGFP) using the in utero electroporation technique. Injection of venous blood into the lateral ventricles of 7-day-old rats in the operation group caused marked enlargement of the ventricles in 60% (9/15) of the rats after 2 weeks and in 53.3% (8/15) of the rats after 3 weeks. Compared with the control group, the length of the neural dendrites in the somatosensory cortex was shortened and the number of both neuron dendrite branches and synapses was significantly decreased. There was no evidence of cerebral cortical neuron death as shown by positive EGFP cell counting which suggest that neurological dysfunction after intra-ventricular hemorrhage-induced hydrocephalus may be related to the shortening of neural dendrites and the decreased number of synapses in somatosensory cortex and thus provides a possible neurological cause for hydrocephalus-induced cognitive decline and motor dysfunction.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, ChangZheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|