1
|
Esteban-Lopez M, Wilson KJ, Myhr C, Kaftanovskaya EM, Henderson MJ, Southall NT, Xu X, Wang A, Hu X, Barnaeva E, Ye W, George ER, Sherrill JT, Ferrer M, Morello R, Agoulnik IU, Marugan JJ, Agoulnik AI. Discovery of small molecule agonists of the Relaxin Family Peptide Receptor 2. Commun Biol 2022; 5:1183. [PMCID: PMC9636434 DOI: 10.1038/s42003-022-04143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The relaxin/insulin-like family peptide receptor 2 (RXFP2) belongs to the family of class A G-protein coupled receptors (GPCRs) and it is the only known target for the insulin-like factor 3 peptide (INSL3). The importance of this ligand-receptor pair in the development of the gubernacular ligament during the transabdominal phase of testicular descent is well established. More recently, RXFP2 has been implicated in maintaining healthy bone formation. In this report, we describe the discovery of a small molecule series of RXFP2 agonists. These compounds are highly potent, efficacious, and selective RXFP2 allosteric agonists that induce gubernacular invagination in mouse embryos, increase mineralization activity in human osteoblasts in vitro, and improve bone trabecular parameters in adult mice. The described RXFP2 agonists are orally bioavailable and display favorable pharmacokinetic properties, which allow for future evaluation of the therapeutic benefits of modulating RXFP2 activation in disease models. Specific small molecule RXFP2 agonists with favorable pharmacokinetic properties induce gubernacular invagination in mouse embryos, increase mineralization activity in human osteoblasts in vitro, and improve bone trabecular parameters in adult mice.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- grid.65456.340000 0001 2110 1845Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA
| | - Kenneth J. Wilson
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Courtney Myhr
- grid.65456.340000 0001 2110 1845Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA
| | - Elena M. Kaftanovskaya
- grid.65456.340000 0001 2110 1845Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA
| | - Mark J. Henderson
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Noel T. Southall
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Xin Xu
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Amy Wang
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Xin Hu
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Elena Barnaeva
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Wenjuan Ye
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Emmett R. George
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - John T. Sherrill
- grid.241054.60000 0004 4687 1637Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Marc Ferrer
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Roy Morello
- grid.241054.60000 0004 4687 1637Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Irina U. Agoulnik
- grid.65456.340000 0001 2110 1845Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| | - Juan J. Marugan
- grid.94365.3d0000 0001 2297 5165Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD USA
| | - Alexander I. Agoulnik
- grid.65456.340000 0001 2110 1845Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, FL USA
| |
Collapse
|
2
|
Abstract
Cryptorchidism, i.e., undescended testis, is one of the most common genital malformations in newborn male babies. The birth rate of cryptorchidism varies from 1.6 to 9.0 %. Etiology of disrupted testicular descent is complex and predisposing causes include genetic, hormonal, environmental, lifestyle and maternal factors. Testicular descent occurs in two major steps and testicular hormones and normal function of hypothalamic-pituitary-testicular axis are important for normal descent. Several gene mutations are associated with syndromic cryptorchidism but they are rarely found in boys with isolated undescended testis. Testicular regression can also cause an empty scrotum. Normal male genital phenotype indicates that the boy has had functioning testis during development. Torsion of the testis can cause testicular regression but in many cases the reason for vanishing testis remains elusive. In this narrative review we discuss genetics of cryptorchidism and testicular regression.
Collapse
Affiliation(s)
- Heidi P Elamo
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland.
| |
Collapse
|
3
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
4
|
Sinopidis X, Mourelatou R, Kostopoulou E, Karvela A, Rojas-Gil AP, Tsekoura E, Georgiou G, Spiliotis BE. Novel combined insulin-like 3 variations of a single nucleotide in cryptorchidism. J Pediatr Endocrinol Metab 2019; 32:987-994. [PMID: 31444964 DOI: 10.1515/jpem-2018-0547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
Abstract
Background Insulin-like 3 hormone (INSL3) is involved in the process of testicular descent, and has been thoroughly studied in cryptorchidism. However, INSL3 allelic variations found in the human genome were heterozygous and only a few of them were found exclusively in patients with cryptorchidism. Under this perspective, we aimed to study the presence of INSL3 allelic variations in a cohort of patients with cryptorchidism and to estimate their potential consequences. Methods Blood samples were collected from 46 male patients with non-syndromic cryptorchidism and from 43 age-matched controls. DNA extraction and polymerase chain reaction (PCR) were performed for exons 1 and 2 of the INSL3 gene in all subjects. Sequencing analysis was carried out on the PCR products. All data were grouped according to testicular location. Results Seven variations of a single nucleotide (SNVs) were identified both in patients with cryptorchidism and in controls: rs2286663 (c.27G > A), rs1047233 (c.126A > G) and rs6523 (c.178A > G) at exon 1, rs74531687 (c.191-30C > T) at the intron, rs121912556 (c.305G > A) at exon 2 and rs17750642 (c.*101C > A) and rs1003887 (c.*263G > A) at the untranslated region (UTR). The allelic variants rs74531687 and rs121912556 were found for the first time in the Greek population. The novel homozygotic combination of the three allelic variants rs1047233-rs6523-rs1003887 seemed to present a stronger correlation with more severe forms of cryptorchidism. Conclusions The combination of specific INSL3 SNVs rather than the existence of each one of them alone may offer a new insight into the involvement of allelic variants in phenotypic variability and severity.
Collapse
Affiliation(s)
- Xenophon Sinopidis
- Assistant Professor, Department of Pediatric Surgery, School of Medicine, University of Patras, 26504 Rion, Patras, Greece
| | - Roza Mourelatou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Eirini Kostopoulou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Alexia Karvela
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Andrea-Paola Rojas-Gil
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Efstathia Tsekoura
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - George Georgiou
- Department of Pediatric Surgery, Children's Hospital, Patras, Greece
| | - Bessie E Spiliotis
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|