1
|
Shehata AS, Zidan RA, El-Mahroky SM, Abd El-Baset SA. Efficacy of platelet rich plasma on pancreatic injury induced by renal ischemia reperfusion in adult male rats. Ultrastruct Pathol 2022; 46:188-203. [DOI: 10.1080/01913123.2022.2044945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Azza S. Shehata
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A. Zidan
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa M. El-Mahroky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samia A. Abd El-Baset
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Yam AO, Chtanova T. Imaging the neutrophil: Intravital microscopy provides a dynamic view of neutrophil functions in host immunity. Cell Immunol 2019; 350:103898. [PMID: 30712753 DOI: 10.1016/j.cellimm.2019.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
Abstract
Neutrophils are the first cellular responders of the immune system. They employ their impressive arsenal of microbicidal molecules to provide rapid and efficient defense against pathogens. However, the role of neutrophils extends far beyond microbial destruction to include tissue repair and remodeling, provision of signals to the adaptive immune system and body homeostasis. Intravital imaging has allowed the visualization of neutrophils in their native environment in both health and disease and provided crucial insights into their mechanisms of action. In the last few years the power of intravital imaging has been considerably extended by the introduction of photoconvertible proteins and intracellular signaling reporter mice. This review will highlight recent advances in our understanding of neutrophil biology based on the use of intravital microscopy to visualize their modus operandi in vivo including migration in and out of inflamed tissues, host-pathogen interactions and cell fate.
Collapse
Affiliation(s)
- Andrew O Yam
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
3
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
El-Shitany NA, El-Desoky K. Cromoglycate, not ketotifen, ameliorated the injured effect of warm ischemia/reperfusion in rat liver: role of mast cell degranulation, oxidative stress, proinflammatory cytokine, and inducible nitric oxide synthase. Drug Des Devel Ther 2015; 9:5237-46. [PMID: 26396497 PMCID: PMC4577270 DOI: 10.2147/dddt.s88337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatic ischemia/reperfusion (ISCH/REP) is a major clinical problem that is considered to be the most common cause of postoperative liver failure. Recently, mast cells have been proposed to play an important role in the pathophysiology of ISCH/REP in many organs. In contrast, the role played by mast cells during ISCH/REP-induced liver damage has remained an issue of debate. This study aimed to investigate the protective role of mast cells in order to search for an effective therapeutic agent that could protect against fatal ISCH/REP-induced liver damage. A model of warm ISCH/REP was induced in the liver of rats. Four groups of rats were used in this study: Group I: SHAM (normal saline, intravenously [iv]); Group II: ISCH/REP; Group III: sodium cromoglycate + ISCH/REP (CROM + ISCH/REP), and Group IV: ketotifen (KET) + ISCH/REP (KET + ISCH/REP). Liver damage was assessed both histopathologically and biochemically. Mast cell degranulation was assessed histochemically. Lipid peroxidation (malondialdehyde [MDA]) as well as the levels of glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), the formation of nitric oxide (NO), and the expression of inducible NO synthase (iNOS) were determined. The results of this study revealed increased mast cell degranulation in the liver during the acute phase of ISCH/REP. Moreover, CROM, but not KET, decreased the activity of alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase and maintained normal liver tissue histology. Both CROM and KET protected against mast cell degranulation in the liver. In addition, both CROM and KET decreased IL-6 and TNF-α. However, CROM, but not KET, decreased MDA formation and increased GSH. Furthermore, KET, but not CROM, increased both NO formation and iNOS expression. In conclusion, this study clearly demonstrated mast cell degranulation in warm ISCH/REP in the liver of rats. More importantly, CROM, but not KET, ameliorated the effect of ISCH/REP-induced injury in rat liver. CROM may protect the liver through mast cell stabilization, inhibition of TNF-α, IL-6, MDA, and iNOS and increased GSH. KET may maintain ISCH/REP-induced liver injury through the NO/iNOS pathway.
Collapse
Affiliation(s)
- Nagla A El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Karema El-Desoky
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
The role of mast cells in ischemia and reperfusion injury. Inflamm Res 2014; 63:899-905. [PMID: 25108401 DOI: 10.1007/s00011-014-0763-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Ischemia and reperfusion (IR) injury is a challenging clinical problem that is triggered by ischemia in an organ followed by subsequent restoration of the blood supply. The effects of mast cell (MC) in IR injury are not totally clear. MATERIALS AND METHODS We review the body of literature on the role of MCs in IR injury based on an unrestricted Pubmed search for the descriptors "mast cell", "ischemia" and "reperfusion injury", as well as discuss implications for treatment and future directions. RESULTS Shortly after IR, chemicals released by MC can trigger vasoactive substance formation, tissue leakage, upregulation of adhesive molecules followed by leukocyte recruitment and infiltration, and pronecrotic pathway activation, among other physiologic changes. In the long term, MCs may influence tissue remodeling and repair as well as blood restoration after IR. Consistent with these findings, methods and drugs that target MCs have been shown to attenuate IR injury. CONCLUSION It has been demonstrated that MCs play a role in IR injury, but the mechanisms are complex and need to be further studied.
Collapse
|
6
|
Yang MQ, Ma YY, Tao SF, Ding J, Rao LH, Jiang H, Li JY. Mast cell degranulation promotes ischemia-reperfusion injury in rat liver. J Surg Res 2013; 186:170-8. [PMID: 24139633 DOI: 10.1016/j.jss.2013.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/07/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mast cells (MCs) play a role in ischemia-reperfusion (I/R) injury in many organs. However, a recent study found that MCs are not involved in I/R injury in isolated rat livers that were perfused only for 1 h. The purpose of this study is to reevaluate the role of MCs in hepatic I/R injury in rat. MATERIALS AND METHODS A warm hepatic I/R injury model of 1 h ischemia followed by 24 h of reperfusion was used. MC modulation was induced via cromolyn injection or a method called MC depletion using compound 48/80. The effects of MC modulation were evaluated by toluidine blue staining and assessment of mast cell tryptase in sera. The role of MCs in I/R injury was evaluated by hematoxylin and eosin staining graded by Suzuki criteria, alanine aminotransferase and aspartate aminotransferase levels in sera, and malondialdehyde levels in liver homogenates. RESULTS First, MC degranulation peaked after 2 h of reperfusion and liver damage peaked after approximately 6 h of reperfusion. Second, a method called MC depletion previously used in the skin with repeated injections of compound 48/80 worked similarly in the hepatic setting. Third, stabilization of MCs with cromolyn or depletion of MCs with compound 48/80 each decreased hepatic I/R injury. The most noticeable effects of cromolyn and compound 48/80 treatment were observed after approximately 6 h of reperfusion. CONCLUSIONS MC degranulation promotes hepatic I/R injury in rats.
Collapse
Affiliation(s)
- Mu-qing Yang
- Department of General Surgery, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Kadkhodaee M, Khastar H, Seifi B, Najafi A, Delavari F. Renal oxidative injury after leukocyte transfer from ischemia-reperfusion-induced kidney damage in Balb/c mice. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:99-106. [PMID: 23471045 DOI: 10.1556/aphysiol.100.2013.1.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The present study investigates the role of leukocyte transfer in the induction of kidney damage from mice that have undergone a severe renal ischemia-reperfusion insult into the intact recipient mice. First, Balb/c (inbred) mice were subjected to either sham operation (Sham donors) or bilateral renal IR injury (60 min ischemia-3 h reperfusion, IR donors). Leukocytes were isolated from blood and were transferred to two recipient groups: intact recipient mice received leukocytes from Sham donor group (Sham recipient) or from IR donor group (IR recipient). After 24 h, recipient mice were anesthetized for sample collections. Renal malondialdehyde increased and total glutathione concentration and superoxide dismutase activity decreased significantly in the IR recipient group compared to the Sham recipient group. BUN and plasma creatinine were significantly different between donor groups, but these parameters were not significantly different in the two recipient groups. In the IR donor group, there have been extensive changes in renal tissues comparing to Sham including severe destruction of the tubules, necrosis and tubular obstruction plus tubular flattening. IR recipient kidneys showed significant differences from their corresponding Sham group, demonstrating some degrees of injury including loss of brush borders from proximal tubules, cellular vacuolation and flattening of the tubules. However, less tissue damage was seen in this group comparing to IR donor kidneys. These findings showed that leucocytes transferred from post-ischemic mice induced oxidative stress and consequent damage to native kidneys, suggesting a role of leucocytes in the oxidative processes of reperfusion injury.
Collapse
Affiliation(s)
- Mehri Kadkhodaee
- Tehran University of Medical Sciences Department of Physiology, Faculty of Medicine Tehran Iran Tehran University of Medical Sciences Department of Physiology, School of Medicine Tehran 14176-13151 Iran
| | | | | | | | | |
Collapse
|
8
|
Anand P, Singh B, Jaggi AS, Singh N. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:657-70. [PMID: 22562473 DOI: 10.1007/s00210-012-0757-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/17/2012] [Indexed: 12/16/2022]
Abstract
The mast cells are multi-effector cells with wide distribution in the different body parts and traditionally their role has been well-defined in the development of IgE-mediated hypersensitivity reactions including bronchial asthma. Due to the availability of genetically modified mast cell-deficient mice, the broadened pathophysiological role of mast cells in diverse diseases has been revealed. Mast cells exert different physiological and pathophysiological roles by secreting their granular contents, including vasoactive amines, cytokines and chemokines, and various proteases, including tryptase and chymase. Furthermore, mast cells also synthesize plasma membrane-derived lipid mediators, including prostaglandins and leukotrienes, to produce diverse biological actions. The present review discusses the pathophysiological role of mast cells in different diseases, including atherosclerosis, pulmonary hypertension, ischemia-reperfusion injury, male infertility, autoimmune disorders such as rheumatoid arthritis and multiple sclerosis, bladder pain syndrome (interstitial cystitis), anxiety, Alzheimer's disease, nociception, obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Preet Anand
- Department of Chemistry, Punjabi University, Patiala 147002, India
| | | | | | | |
Collapse
|
9
|
Lê BV, Khorsi-Cauet H, Bach V, Gay-Quéheillard J. Mast cells mediate Pseudomonas aeruginosa lipopolysaccharide-induced lung inflammation in rat. Eur J Clin Microbiol Infect Dis 2012; 31:1983-90. [PMID: 22282020 DOI: 10.1007/s10096-011-1530-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 11/13/2011] [Indexed: 02/04/2023]
Abstract
Activated mast cells have been demonstrated to play a pivotal role in Pseudomonas aeruginosa lung infections. However, there is no report about the involvement of mast cells in P. aeruginosa lipopolysaccharide (LPS)-induced lung inflammation. This study aimed at evaluating the role of mast cells in P. aeruginosa LPS-induced lung inflammation in rats. Mast cells stabilization was carried out by intraperitoneal injections of cromolyn. Lung inflammation was induced by the intratracheal instillation of P. aeruginosa LPS (5 μg/kg bw) and inflammatory status was evaluated 4 h post-LPS instillation. We found that activated mast cells could constitute a pivotal source of several inflammatory cytokines, including TNF-α, IL-1β, and IL-6. These cells might regulate polymorphonuclear neutrophil (PMN) recruitment and be implicated in the alteration of alveolar-capillary permeability via the release of TNF-α and IL-1β. We also detected that activated mast cells could be involved in the alteration of the expression of two epithelial tight junction proteins (claudin-1 and occludin) during the acute phase of inflammation. Our results suggest that activated mast cells might play a critical role in P. aeruginosa LPS-induced lung inflammation. Therefore, mast cell stabilization may be a potential novel approach for the prevention and treatment of P. aeruginosa-induced lung infections.
Collapse
Affiliation(s)
- B V Lê
- Peritox Laboratory, EA4285-UMI 01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036, Amiens, France
| | | | | | | |
Collapse
|
10
|
Sanz MJ, Kubes P. Neutrophil-active chemokines in in vivo imaging of neutrophil trafficking. Eur J Immunol 2012; 42:278-83. [DOI: 10.1002/eji.201142231] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:229-317. [PMID: 22878108 PMCID: PMC3904795 DOI: 10.1016/b978-0-12-394309-5.00006-7] [Citation(s) in RCA: 1503] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disorders characterized by ischemia/reperfusion (I/R), such as myocardial infarction, stroke, and peripheral vascular disease, continue to be among the most frequent causes of debilitating disease and death. Tissue injury and/or death occur as a result of the initial ischemic insult, which is determined primarily by the magnitude and duration of the interruption in the blood supply, and then subsequent damage induced by reperfusion. During prolonged ischemia, ATP levels and intracellular pH decrease as a result of anaerobic metabolism and lactate accumulation. As a consequence, ATPase-dependent ion transport mechanisms become dysfunctional, contributing to increased intracellular and mitochondrial calcium levels (calcium overload), cell swelling and rupture, and cell death by necrotic, necroptotic, apoptotic, and autophagic mechanisms. Although oxygen levels are restored upon reperfusion, a surge in the generation of reactive oxygen species occurs and proinflammatory neutrophils infiltrate ischemic tissues to exacerbate ischemic injury. The pathologic events induced by I/R orchestrate the opening of the mitochondrial permeability transition pore, which appears to represent a common end-effector of the pathologic events initiated by I/R. The aim of this treatise is to provide a comprehensive review of the mechanisms underlying the development of I/R injury, from which it should be apparent that a combination of molecular and cellular approaches targeting multiple pathologic processes to limit the extent of I/R injury must be adopted to enhance resistance to cell death and increase regenerative capacity in order to effect long-lasting repair of ischemic tissues.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, USA
| | | | | | | |
Collapse
|
12
|
Zhang S, Rahman M, Zhang S, Qi Z, Herwald H, Thorlacius H. Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung. Am J Physiol Lung Cell Mol Physiol 2011; 300:L930-9. [PMID: 21441352 DOI: 10.1152/ajplung.00422.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. Male C57BL/6 mice were pretreated with simvastatin or a CXCR2 antagonist before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for determination of neutrophil infiltration, formation of edema, and CXC chemokines. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. M1 protein challenge caused massive infiltration of neutrophils, edema formation, and production of CXC chemokines in the lung as well as upregulation of Mac-1 on circulating neutrophils. Simvastatin reduced M1 protein-induced infiltration of neutrophils and edema in the lung. In addition, M1 protein-induced Mac-1 expression on neutrophils was abolished by simvastatin. Furthermore, simvastatin markedly decreased pulmonary formation of CXC chemokines and gene expression of CXC chemokines in alveolar macrophages. Moreover, the CXCR2 antagonist reduced M1 protein-induced neutrophil expression of Mac-1 and accumulation of neutrophils as well as edema formation in the lung. These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.
Collapse
Affiliation(s)
- Songen Zhang
- Department of Clinical Sciences, Section for Surgery, Malmö University Hospital, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg 2010; 396:13-29. [PMID: 21088974 DOI: 10.1007/s00423-010-0727-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND Intestinal ischemia and reperfusion (I/R) is a challenging and life-threatening clinical problem with diverse causes. The delay in diagnosis and treatment contributes to the continued high in-hospital mortality rate. RESULTS Experimental research during the last decades could demonstrate that microcirculatory dysfunctions are determinants for the manifestation and propagation of intestinal I/R injury. Key features are nutritive perfusion failure, inflammatory cell response, mediator surge and breakdown of the epithelial barrier function with bacterial translocation, and development of a systemic inflammatory response. This review provides novel insight into the basic mechanisms of damaged intestinal microcirculation and covers therapeutic targets to attenuate intestinal I/R injury. CONCLUSION The opportunity now exists to apply this insight into the translation of experimental data to clinical trial-based research. Understanding the basic events triggered by intestinal I/R may offer new diagnostic and therapeutic options in order to achieve improved outcome of patients with intestinal I/R injury.
Collapse
|
14
|
Santén S, Mihaescu A, Laschke MW, Menger MD, Wang Y, Jeppsson B, Thorlacius H. p38 MAPK regulates ischemia-reperfusion-induced recruitment of leukocytes in the colon. Surgery 2009; 145:303-12. [PMID: 19231583 DOI: 10.1016/j.surg.2008.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 10/09/2008] [Indexed: 02/08/2023]
|
15
|
Sand E, Themner-Persson A, Ekblad E. Infiltration of mast cells in rat colon is a consequence of ischemia/reperfusion. Dig Dis Sci 2008; 53:3158-69. [PMID: 18463982 DOI: 10.1007/s10620-008-0279-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/02/2008] [Indexed: 12/11/2022]
Abstract
Intestinal ischemia as well as mastocytosis occur in patients with inflammatory bowel disease and irritable bowel syndrome. Our aim was to clarify how ischemia with reperfusion (I/R) affects the structure, enteric neurons, and immune cells in the colon. Rats were subjected to colon ischemia for 1 h and reperfused for 1 day up to 20 weeks; sham-operated rats were used as controls. No structural remodeling of the intestinal segment was detected after I/R. The number and distribution of eosinophils were not affected by I/R. Local areas containing numerous mast cells were detected in the muscle layers, the serosa, and in and around the myenteric ganglia 4-20 weeks post ischemia. It was notable that myenteric ganglionic formations within mast-cell-rich areas virtually lacked neurons. Mast cells were rarely found in controls. In conclusion, I/R of the colon attracts mast cells, and death of myenteric neurons occurs in such locations.
Collapse
Affiliation(s)
- Elin Sand
- Neurogastroenterology Unit, Department of Experimental Medical Science, Lund University, BMC B:11, S-22184, Lund, Sweden.
| | | | | |
Collapse
|