1
|
Zhou WM, Liu B, Shavandi A, Li L, Song H, Zhang JY. Methylation Landscape: Targeting Writer or Eraser to Discover Anti-Cancer Drug. Front Pharmacol 2021; 12:690057. [PMID: 34149432 PMCID: PMC8209422 DOI: 10.3389/fphar.2021.690057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major global health challenge for our health system, despite the important pharmacological and therapeutic discoveries we have seen since past 5 decades. The increasing prevalence and mortality of cancer may be closely related to smoking, exposure to environmental pollution, dietary and genetic factors. Despite significant promising discoveries and developments such as cell and biotechnological therapies a new breakthrough in the medical field is needed to develop specific and effective drugs for cancer treatment. On the development of cell therapies, anti-tumor vaccines, and new biotechnological drugs that have already shown promising effects in preclinical studies. With the continuous enrichment and development of chromatin immunoprecipitation sequencing (ChIP-seq) and its derivative technologies, epigenetic modification has gradually become a research hotspot. As key ingredients of epigenetic modification, Writers, Readers, Erasers have been gradually unveiled. Cancer has been associated with epigenetic modification especially methylation and therefore different epigenetic drugs have been developed and some of those are already undergoing clinical phase I or phase II trials, and it is believed that these drugs will certainly assist the treatment in the near future. With respect to this, an overview of anti-tumor drugs targeting modified enzymes and de-modified enzymes will be performed in order to contribute to future research.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Amin Shavandi
- BioMatter Unit, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lu Li
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Zhang J, Yang C, Wu C, Cui W, Wang L. DNA Methyltransferases in Cancer: Biology, Paradox, Aberrations, and Targeted Therapy. Cancers (Basel) 2020; 12:cancers12082123. [PMID: 32751889 PMCID: PMC7465608 DOI: 10.3390/cancers12082123] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
DNA methyltransferases are an essential class of modifiers in epigenetics. In mammals, DNMT1, DNMT3A and DNMT3B participate in DNA methylation to regulate normal biological functions, such as embryo development, cell differentiation and gene transcription. Aberrant functions of DNMTs are frequently associated with tumorigenesis. DNMT aberrations usually affect tumor-related factors, such as hypermethylated suppressor genes and genomic instability, which increase the malignancy of tumors, worsen the prognosis for patients, and greatly increase the difficulty of cancer therapy. However, the impact of DNMTs on tumors is still controversial, and therapeutic approaches targeting DNMTs are still under exploration. Here, we summarize the biological functions and paradoxes associated with DNMTs and we discuss some emerging strategies for targeting DNMTs in tumors, which may provide novel ideas for cancer therapy.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Cheng Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Correspondence: (W.C.); (L.W.)
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.Z.); (C.Y.); (C.W.)
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
- Correspondence: (W.C.); (L.W.)
| |
Collapse
|
3
|
Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proc Natl Acad Sci U S A 2020; 117:13000-13011. [PMID: 32434918 PMCID: PMC7293657 DOI: 10.1073/pnas.1917362117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.
Collapse
|
4
|
Yang Q, Jiang W, Hou P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin Cancer Biol 2019; 59:112-124. [DOI: 10.1016/j.semcancer.2019.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 01/23/2023]
|
5
|
McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta Rev Cancer 2018; 1870:185-197. [PMID: 30318472 DOI: 10.1016/j.bbcan.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
The PI3K/Akt/mTOR pathway plays a role in various oncogenic processes in breast cancer and key pathway aberrations have been identified which drive the different molecular subtypes. Early drugs developed targeting this pathway produced some clinical success but were hampered by pharmacokinetics, tolerability and efficacy problems. This created a need for new PI3K pathway-inhibiting drugs, which would produce more robust results allowing incorporation into treatment regimens for breast cancer patients. In this review, the most promising candidates from the new generation of PI3K-pathway inhibitors is explored, presenting evidence from preclinical and early clinical research, as well as ongoing trials utilising these drugs in breast cancer cohorts. The problems hindering the development of drugs targeting the PI3K pathway are examined, which have created problems for their use as monotherapies. PI3K pathway inhibitor combinations therefore remains a dynamic research area, and their role in combination with immunotherapies and epigenetic therapies is also inspected.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sarah McGarrigle
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Abstract
In the last decade, epigenetic drugs (such as inhibitors of DNA methyltransferases and histone deacetylases) have been intensively used for cancer treatment. Their applications have shown high anticancer effectivity and tolerable side effects. However, they are unfortunately not effective in the treatment of some types and phenotypes of cancers. Nevertheless, several studies have demonstrated that problems of drug efficacy can be overcome through the combined application of therapeutic modulates. Therefore, combined applications of epigenetic agents with chemotherapy, radiation therapy, immunotherapy, oncolytic virotherapy and hyperthermia have been presented. This review summarizes and discusses the general principles of this approach, as introduced and supported by numerous examples. In addition, predictions of the future potential applications of this methodology are included.
Collapse
|
7
|
Vitale G, Dicitore A, Pepe D, Gentilini D, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Misso G, Di Blasio AM, Hofland LJ, Caraglia M, Persani L. Synergistic activity of everolimus and 5-aza-2'-deoxycytidine in medullary thyroid carcinoma cell lines. Mol Oncol 2017; 11:1007-1022. [PMID: 28453190 PMCID: PMC5537710 DOI: 10.1002/1878-0261.12070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo‐ and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5‐aza‐2′‐deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ‐CRC‐1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome‐wide expression profiling was evaluated by Illumina BeadChip in MZ‐CRC‐1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K‐Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR‐MAPK10‐TP53‐Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ‐CRC‐1 cells. Interestingly, addition of a neutralizing anti‐NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | | | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Elisa S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Maria O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Experimental Laboratory of Immuno-rheumatologic Researches, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Maria C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Anna M Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Leo J Hofland
- Section Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
8
|
Spangle JM, Roberts TM, Zhao JJ. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:123-131. [PMID: 28315368 DOI: 10.1016/j.bbcan.2017.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/27/2022]
Abstract
The PI3-kinase/AKT pathway integrates signals from external cellular stimuli to regulate essential cellular functions, and is frequently aberrantly activated in human cancers. Recent research demonstrates that tight regulation of the epigenome is critical in preserving and restricting transcriptional activation, which can impact cellular growth and proliferation. In this review we examine mechanisms by which the PI3K/AKT pathway regulates the epigenome to promote oncogenesis, and highlight how connections between PI3K/AKT and the epigenome may impact the future therapeutic treatment of cancers featuring a hyperactivated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jennifer M Spangle
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| | - Thomas M Roberts
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Tan P, Tiong IS, Fleming S, Pomilio G, Cummings N, Droogleever M, McManus J, Schwarer A, Catalano J, Patil S, Avery S, Spencer A, Wei A. The mTOR inhibitor everolimus in combination with azacitidine in patients with relapsed/refractory acute myeloid leukemia: a phase Ib/II study. Oncotarget 2016; 8:52269-52280. [PMID: 28881728 PMCID: PMC5581027 DOI: 10.18632/oncotarget.13699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/20/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic options are limited in relapsed/refractory acute myeloid leukemia (AML). We evaluated the maximum tolerated dose (MTD) and preliminary efficacy of mammalian target of rapamycin (mTOR) inhibitor, everolimus (days 5–21) in combination with azacitidine 75 mg/m2 subcutaneously (days 1–5 and 8–9 every 28 days) in 40 patients with relapsed (n = 27), primary refractory (n = 11) or elderly patients unfit for intensive chemotherapy (n = 2). MTD was not reached following everolimus dose escalation (2.5, 5 or 10 mg; n = 19) to the 10 mg dose level which was expanded (n = 21). Major adverse events (grade > 2) were mostly disease-related: neutropenia (73%), thrombocytopenia (67%), mucositis (24%) and febrile neutropenia (19%). Overall survival (OS) of the entire cohort was 8.5 months, and overall response rate (ORR; including CR/CRi/PR/MLFS) was 22.5%. Furthermore, a landmark analysis beyond cycle 1 revealed superior OS and ORR in patients receiving 2.5 mg everolimus with azoles, compared to those without azoles (median OS 12.8 vs. 6.0 months, P = 0.049, and ORR 50% vs. 16%, P = 0.056), potentially due to achievement of higher everolimus blood levels. This study demonstrates that everolimus in combination with azacitidine is tolerable, with promising clinical activity in advanced AML.
Collapse
Affiliation(s)
- Peter Tan
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Ing Soo Tiong
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Shaun Fleming
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Nik Cummings
- Department of Pathology, Alfred Hospital, Melbourne, Australia
| | - Mark Droogleever
- Faculty of Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Julie McManus
- Department of Pathology, Alfred Hospital, Melbourne, Australia
| | - Anthony Schwarer
- Eastern Health Clinical School, Monash University, Box Hill, Australia
| | - John Catalano
- Clinical Haematology, Frankston Hospital, Frankston, Australia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Andrew Wei
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Wen M, Li B, Cao X, Weng C, Wu Y, Fang X, Zhang X, Liu G. Clinical significance of aberrant mammalian target of rapamycin expression in stage IIIB colon cancer. Oncol Lett 2014; 8:1080-1086. [PMID: 25120661 PMCID: PMC4114703 DOI: 10.3892/ol.2014.2285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/23/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the significance of aberrant expression of mammalian target of rapamycin (mTOR) and the activated form of mTOR kinase, phosphorylated mTOR (pmTOR), in human stage IIIB colon cancer. The expression of mTOR and pmTOR was detected by immunohistochemistry in the tumor tissue of stage IIIB colon cancer patients. The association between the expression of mTOR, pmTOR and clinicopathological parameters of patients was analyzed. The positive expression of mTOR and pmTOR was observed to be higher in 75.5% (80/106) and 76.4% (81/106) of the 106 colon cancer specimens, compared with the adjacent normal tissues. The high level of pmTOR expression was found to be significantly higher in the invasive tumor front cells and resulted in a higher risk of mortality. The results suggested that mTOR and pmTOR may be promising clinical markers and present novel molecular targets for designing novel therapeutic strategies to treat this malignancy.
Collapse
Affiliation(s)
- Meiling Wen
- Department of Medical Oncology, Affiliated Nanhua Hospital, Nan Hua University of South China, Hengyang, Hunan 421002, P.R. China
| | - Baoxiu Li
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaofei Cao
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Chengyin Weng
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xisheng Fang
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaoshi Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Guolong Liu
- Department of Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
11
|
Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Past and Future Perspectives. Cancers (Basel) 2011; 3:2478-500. [PMID: 24212820 PMCID: PMC3757428 DOI: 10.3390/cancers3022478] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, extensive studies have been made to understand the role played by the mammalian target of rapamycin (mTOR) in cancer. Knowledge in this field has been gained from discoveries in basic research as well as from observations made in patients treated with allosteric mTOR inhibitors such as rapamycin. Despite promising preclinical studies, targeting mTOR in cancer therapy has shown limited clinical benefits so far. However, recent findings have revealed the complexity of the functions of mTOR in cancer and have helped develop new strategies to improve the anticancer efficacy of mTOR inhibitors. In particular, a complex network between mTOR and other signaling pathways has been identified that influences the anticancer efficacy of mTOR inhibitors. In addition, an emerging role of mTOR in the tumor microenvironment has been suggested. In this review, we confront the major findings that have been made in the past, both in experimental settings as well as in clinical trials. We further review the strategies that have been designed to further improve the efficacy of therapies targeting mTOR.
Collapse
|
12
|
Targeting the JNK signaling pathway potentiates the antiproliferative efficacy of rapamycin in LS174T colon cancer cells. J Surg Res 2011; 167:e193-8. [PMID: 21324487 DOI: 10.1016/j.jss.2011.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/21/2010] [Accepted: 01/07/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND Targeting the mTOR signaling pathway with rapamycin in cancer therapy has been less successful than expected due in part to the removal of a negative feedback loop resulting in the over-activation of the PI3K/Akt signaling pathway. As the c-Jun N-terminal kinase (JNK) signaling pathway has been found to be a functional target of PI3K, we investigate the role of JNK in the anticancer efficacy of rapamycin. MATERIALS AND METHODS The colon cancer cell line LS174T was treated with rapamycin and JNK phosphorylation was analyzed by Western Blot. Overexpression of a constitutively negative mutant of JNK in LS174T cells or treatment of LS174T cells with the JNK inhibitor SP600125 were used to determine the role of JNK in rapamycin-mediated tumor growth inhibition. RESULTS Treatment of LS174T cells with rapamycin resulted in the phosphorylation of JNK as observed by Western Blot. The expression of a negative mutant of JNK in LS174T cells or treatment of LS174T cells with SP600125 enhanced the antiproliferative effects of rapamycin. In addition, in vivo, the antitumor activity of rapamycin was potentiated on LS174T tumor xenografts that expressed the dominant negative mutant of JNK. CONCLUSIONS Taken together, these results show that rapamycin-induced JNK phosphorylation and activation reduces the antitumor efficacy of rapamycin in LS174T cells.
Collapse
|
13
|
Zhang YJ, Bao YJ, Dai Q, Yang WY, Cheng P, Zhu LM, Wang BJ, Jiang FH. mTOR signaling is involved in indomethacin and nimesulide suppression of colorectal cancer cell growth via a COX-2 independent pathway. Ann Surg Oncol 2010; 18:580-8. [PMID: 20803081 DOI: 10.1245/s10434-010-1268-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inhibition of mammalian target of rapamycin (mTOR) represents an attractive target for anticancer therapy, but its role in suppression of colorectal cancer (CRC) cell growth by cyclooxygenase-2 (COX-2) inhibitors is unclear. Here, we analyzed the effect of indomethacin (Indo, a nonselective COX-2 inhibitor) and nimesulide (Nim, a selective COX-2 inhibitor) on mTOR signaling in CRC cells in vitro and in vivo to determine the dependence of this effect on COX-2. METHODS Human CRC cell lines with varying COX-2 expression levels were treated with Indo and Nim. Western blot test was performed to detect mTOR-related components (mTOR, p70s6 K, and 4EBP1), and cell viability, cell cycle, and apoptosis were assessed. HCT116 and SW1116 cells were injected into athymic nude mice to establish a CRC xenograft model. After treatment with Nim, tumor volume, mTOR signaling, and apoptosis were evaluated in this model. HT29 and SW1116 cells were also treated with Nim after transfection with COX-2-specific small interfering RNA (siRNA) to assess dependence of COX-2 on mTOR signaling under drug treatment. RESULTS Both Indo and Nim reduced mTOR signaling activity in CRC cells that differ in their COX-2 expression in vitro and in vivo. Additionally, Indo and Nim could reduce the mTOR signaling activity after COX-2 silencing in CRC cells. CONCLUSIONS mTOR signaling is involved in Indo- and Nim-mediated suppression of CRC growth via a COX-2 independent pathway. This study unveils a novel mechanism through which COX-2 inhibitors exerts their anticancer effects and further emphasizes targeting mTOR signaling in anticancer therapy.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Department of Digestion, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|