1
|
Mok CC. Targeting the ubiquitin-proteasome pathway in systemic lupus erythematosus. Expert Rev Clin Immunol 2025; 21:531-542. [PMID: 40266558 DOI: 10.1080/1744666x.2025.2497845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
INTRODUCTION The ubiquitin-proteasome system (UPS) is the major non-lysosomal mechanism for selective degradation of intracellular proteins that is essential for the regulation of cellular functions and survival. Modulation of the proteasomes and cereblon E3 ligase promotes degradation of polyubiquitin-tagged transcription factors and oncoproteins, leading to depletion of long-lived plasma cells, diminished autoantibody and interferon-α production, reduced T-cell polarization to the proinflammatory phenotypes and increased regulatory T-cell activity that are relevant to the therapy of systemic lupus erythematosus (SLE). AREAS COVERED Selective immunoproteasome inhibitors and newer generation cereblon modulators have improved safety profiles compared to conventional compounds. This article summarizes the literature regarding the modulation of the UPS in murine and human SLE. EXPERT OPINION Bortezomib and the selective immunoproteasome inhibitors, ONX-0914 and zetomipzomib, ameliorate renal disease in murine lupus models. While clinically effective in refractory SLE, bortezomib is limited by its toxicities. Zetomipzomib shows promising data in phase Ib/II studies of SLE and lupus nephritis. Thalidomide and lenalidomide are effective in refractory cutaneous lupus but again limited by their off-target effects. A phase II RCT of iberdomide shows favorable results in SLE, especially chronic and subacute cutaneous lesions. These molecules should be further explored in larger clinical trials of renal and cutaneous SLE.
Collapse
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, SAR, China
| |
Collapse
|
2
|
Arai Y, Shitama H, Yamagishi M, Ono S, Kashima A, Hiraizumi M, Tsuda N, Katayama K, Tanaka K, Koda Y, Kato S, Sakata K, Nureki O, Miyazaki H. Optimization of α-amido boronic acids via cryo-electron microscopy analysis: Discovery of a novel highly selective immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual inhibitor. Bioorg Med Chem 2024; 109:117790. [PMID: 38906067 DOI: 10.1016/j.bmc.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
The immunoproteasome subunit LMP7 (β5i)/LMP2 (β1i) dual blockade has been reported to suppress B cell differentiation and activation, suggesting that the dual inhibition of LMP7/LMP2 is a promising approach for treating autoimmune diseases. In contrast, the inhibition of the constitutive proteasome subunit β5c correlates with cytotoxicity against non-immune cells. Therefore, LMP7/LMP2 dual inhibitors with high selectivity over β5c may be desirable for treating autoimmune diseases. In this study, we present the optimization and discovery of α-amido boronic acids using cryo-electron microscopy (cryo-EM). The exploitation of structural differences between the proteasome subunits led to the identification of a highly selective LMP7/LMP2 dual inhibitor 19. Molecular dynamics simulation based on cryo-EM structures of the proteasome subunits complexed with 19 explained the inhibitory activity profile. In mice immunized with 4-hydroxy-3-nitrophenylacetyl conjugated to ovalbumin, results indicate that 19 is orally bioavailable and shows promise as potential treatment for autoimmune diseases.
Collapse
Affiliation(s)
- Yuuki Arai
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| | - Hiroaki Shitama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahito Yamagishi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Satoshi Ono
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Akiko Kashima
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Masahiro Hiraizumi
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Naoki Tsuda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Koushirou Katayama
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kouji Tanaka
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Yuzo Koda
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Sayuka Kato
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kei Sakata
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Miyazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan.
| |
Collapse
|
3
|
Lauricella M, Di Liberto D. Special Issue: "Inflammatory Signaling Pathways Involved in Gastrointestinal Diseases". Int J Mol Sci 2024; 25:1287. [PMID: 38279287 PMCID: PMC10816278 DOI: 10.3390/ijms25021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammation is a defensive response of the innate and adaptive immune systems against injury and/or harmful microorganisms to restore homeostasis [...].
Collapse
Affiliation(s)
- Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Biochemistry, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
4
|
Liu J, Guo M, Nanda S, Li Z, Zhou X, Zhang Y, Yang C, Pan H. RNAi-based silencing of proteasome 20S subunit alpha 2 affected the survival and development of Henosepilachna vigintioctopunctata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105547. [PMID: 37666590 DOI: 10.1016/j.pestbp.2023.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Henosepilachna vigintioctopunctata is a notorious pest of solanaceous plants in Asia, which is mainly managed by chemical pesticides. RNA interference (RNAi) technique is considered to be a promising and effective alternative for pest control. In this study, we selected the proteasome 20S subunit alpha 2 (Prosα2) gene, a cellular protein involved in many proteins regulatory processes, to explore the RNAi efficiency in H. vigintioctopunctata. The obtained results confirmed the significant lethal effects of HvProsα2 silencing on the H. vigintioctopunctata 1st instar larvae at concentrations of 100, 50, and 5 ng/μL. Ingestion of the bacterially expressed dsHvProsα2 caused high mortality in both larvae and adults. Moreover, silencing of HvProsα2 resulted in feeding disorders, growth delay, and abnormal intestinal development of the larvae. Overall, HvProsα2 acts as an important regulator for the growth and development of H. vigintioctopunctata, and can serve as a candidate target gene for the RNAi-based control of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Junna Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mujuan Guo
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761200, India
| | - Zhaoyang Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington 40546, USA
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Huipeng Pan
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Koerner J, Horvath D, Oliveri F, Li J, Basler M. Suppression of prostate cancer and amelioration of the immunosuppressive tumor microenvironment through selective immunoproteasome inhibition. Oncoimmunology 2022; 12:2156091. [PMID: 36531689 PMCID: PMC9757486 DOI: 10.1080/2162402x.2022.2156091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
New treatment options to battle hormone-refractory prostate carcinoma (PC) are a pressing medical need. Chronic inflammation has been implicated in PC etiology. The pro-inflammatory cytokines IL-6, IL-23 and IL-17 are key mediators to promote growth of PC. Here, we evaluate the potential of immunoproteasome inhibition for anti-inflammatory and direct anti-tumorigenic therapy of PC. The anti-tumor effect of immunoproteasome inhibitor ONX 0914 was tested in mouse and human PC cells and the in vivo therapeutic efficacy of immunoproteasome inhibition was analyzed in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice in preventive and therapeutic settings and in castration-resistant (CR)PC after castration. Inhibition of the immunoproteasome subunit LMP7 induced apoptotic cell death in PC cell lines. In TRAMP mice, ONX 0914-treatment resulted in significant inhibition of PC growth with a decreased frequency of malignant prostatic lesions and inhibition of metastasis formation. The number of immunosuppressive myeloid cells in PC was greatly reduced in response to ONX 0914. Thus, immunoproteasome inhibition shows remarkable efficacy against PC progression in vivo and impedes tumor recurrence in CRPC-TRAMP mice by blocking the immunosuppressive inflammatory response in the tumor microenvironment. In conclusion, we show that the immunoproteasome is a promising drug target for the treatment of PC.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Franziska Oliveri
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, Chongqing, China,Jun Li Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, Han Yu Road 181, 400030 Chongqing, China
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany,Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland,CONTACT Michael Basler Division of Immunology, Department of Biology, University of Konstanz, Universitaetsstr. 10, D-78457, Konstanz, Germany
| |
Collapse
|
6
|
Scalavino V, Piccinno E, Valentini AM, Mastronardi M, Armentano R, Giannelli G, Serino G. A Novel Mechanism of Immunoproteasome Regulation via miR-369-3p in Intestinal Inflammatory Response. Int J Mol Sci 2022; 23:ijms232213771. [PMID: 36430249 PMCID: PMC9691197 DOI: 10.3390/ijms232213771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The immunoproteasome is a multi-catalytic protein complex expressed in hematopoietic cells. Increased expression of immuno-subunits followed by increased proteasome activities is associated with the pathogenesis of IBD. Therefore, the identification of molecules that could inhibit the activities of this complex has been widely studied. microRNAs are small molecules of non-coding RNA that regulate the expression of target genes. Our purpose was to demonstrate that miR-369-3p is able to reduce the expression of the PSMB9 subunit and consequently modulate the catalytic activities of immunoproteasome. After bioinformatics prediction of the gene target of miR-369-3p, we validated its modulation on PSMB9 expression in the RAW264.7 cell line in vitro. We also found that miR-369-3p indirectly reduced the expression of other immunoproteasome subunits and that this regulation reduced the catalytic functions of the immunoproteasome. Increased levels of PSMB9 were observed in colon samples of acute IBD patients compared to the remission IBD group and control group. Our data suggest that miR-369-3p may be a future alternative therapeutic approach to several compounds currently used for the treatment of inflammatory disorders including IBD.
Collapse
|
7
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
8
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
9
|
Immunoproteasome Function in Normal and Malignant Hematopoiesis. Cells 2021; 10:cells10071577. [PMID: 34206607 PMCID: PMC8305381 DOI: 10.3390/cells10071577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a central part of protein homeostasis, degrading not only misfolded or oxidized proteins but also proteins with essential functions. The fact that a healthy hematopoietic system relies on the regulation of protein homeostasis and that alterations in the UPS can lead to malignant transformation makes the UPS an attractive therapeutic target for the treatment of hematologic malignancies. Herein, inhibitors of the proteasome, the last and most important component of the UPS enzymatic cascade, have been approved for the treatment of these malignancies. However, their use has been associated with side effects, drug resistance, and relapse. Inhibitors of the immunoproteasome, a proteasomal variant constitutively expressed in the cells of hematopoietic origin, could potentially overcome the encountered problems of non-selective proteasome inhibition. Immunoproteasome inhibitors have demonstrated their efficacy and safety against inflammatory and autoimmune diseases, even though their development for the treatment of hematologic malignancies is still in the early phases. Various immunoproteasome inhibitors have shown promising preliminary results in pre-clinical studies, and one inhibitor is currently being investigated in clinical trials for the treatment of multiple myeloma. Here, we will review data on immunoproteasome function and inhibition in hematopoietic cells and hematologic cancers.
Collapse
|
10
|
Role of Proteasomes in Inflammation. J Clin Med 2021; 10:jcm10081783. [PMID: 33923887 PMCID: PMC8072576 DOI: 10.3390/jcm10081783] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is involved in multiple cellular functions including the regulation of protein homeostasis, major histocompatibility (MHC) class I antigen processing, cell cycle proliferation and signaling. In humans, proteasome loss-of-function mutations result in autoinflammation dominated by a prominent type I interferon (IFN) gene signature. These genomic alterations typically cause the development of proteasome-associated autoinflammatory syndromes (PRAAS) by impairing proteasome activity and perturbing protein homeostasis. However, an abnormal increased proteasomal activity can also be found in other human inflammatory diseases. In this review, we cast a light on the different clinical aspects of proteasomal activity in human disease and summarize the currently studied therapeutic approaches.
Collapse
|
11
|
Moallemian R, Rehman AU, Zhao N, Wang H, Chen H, Lin G, Ma X, Yu J. Immunoproteasome inhibitor DPLG3 attenuates experimental colitis by restraining NF-κB activation. Biochem Pharmacol 2020; 177:113964. [PMID: 32278007 DOI: 10.1016/j.bcp.2020.113964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease is a chronic and pathologic autoimmune condition. And immunoproteasome is becoming an attractive therapeutic target for autoimmune inflammatory diseases. In this study, we evaluated the therapeutic effects of a specific small molecule inhibitor of the chymotryptic-like β5i subunits of the immunoproteasome, DPLG3, in a preclinical murine colitis model and explored the underlying molecular mechanism for the immune suppression. DPLG3 showed significant effects in attenuating the disease progression in experimental colitis, reducing the body and spleen weight losses, and colon length shortening compared to vehicle-treated controls and to the well studied immunoproteasome inhibitor ONX-0914. Mechanistically, DPLG3 decreased inflammatory cytokines and the influx of effector T cells and macrophages in colon tissues while increasing the number of regulatory T cells. Molecular docking analysis of the protein-ligand interaction profile revealed that the β5i-DPLG3 complex was more stable and efficient in the binding sites compared to those formed with ONX-0914 and LU-005i. Furthermore, DPLG3 reduced the protein levels of the canonical NF-κB p50 and p65, as well as the nuclear p65. Thus, DPLG3 constitutes a potentially efficacious clinical agent for autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Rezvan Moallemian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jing Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Sheng Yushou Center of Cell Biology and Immunology, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
KONG L, LU J, ZHU H, ZHANG J. [Research progress on selective immunoproteasome inhibitors]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:688-694. [PMID: 31955545 PMCID: PMC8800774 DOI: 10.3785/j.issn.1008-9292.2019.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
Immunoproteasome is associated with various diseases such as hematologic malignancies, inflammatory, autoimmune and central nervous system diseases, and over expression of immunoproteasome is observed in all of these diseases. Immunoproteasome inhibitors can reduce the expression of immunoproteasome by inhibiting the production of related cell-inducing factors and the activity of T lymphocyte for treating related diseases. In order to achieve good efficacy and reduce the toxic effects, key for development of selective immunoproteasome inhibitors is the high selectivity and potent activity of the three active subunits of the proteasome. This review summarizes the structure and functions of immunoproteasome and the associated diseases. Besides, structure, activity and status of selective immunoproteasome inhibitors are also been highlighted.
Collapse
Affiliation(s)
| | | | | | - Jiankang ZHANG
- 张建康(1987-), 男, 博士, 讲师, 硕士生导师, 主要从事抗肿瘤药物研发工作, E-mail:
;
https://orcid.org/0000-0003-0365-7238
| |
Collapse
|
13
|
Xi J, Zhuang R, Kong L, He R, Zhu H, Zhang J. Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases. Eur J Med Chem 2019; 182:111646. [PMID: 31521028 DOI: 10.1016/j.ejmech.2019.111646] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery.
Collapse
Affiliation(s)
- Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang Province, China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
14
|
Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int J Mol Sci 2019; 20:ijms20143379. [PMID: 31295808 PMCID: PMC6678303 DOI: 10.3390/ijms20143379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Proteasome inhibitors have been actively tested as potential anticancer drugs and in the treatment of inflammatory and autoimmune diseases. Unfortunately, cells adapt to survive in the presence of proteasome inhibitors activating a variety of cell responses that explain why these therapies have not fulfilled their expected results. In addition, all proteasome inhibitors tested and approved by the FDA have caused a variety of side effects in humans. Here, we describe the different types of proteasome complexes found within cells and the variety of regulators proteins that can modulate their activities, including those that are upregulated in the context of inflammatory processes. We also summarize the adaptive cellular responses activated during proteasome inhibition with special emphasis on the activation of the Autophagic-Lysosomal Pathway (ALP), proteaphagy, p62/SQSTM1 enriched-inclusion bodies, and proteasome biogenesis dependent on Nrf1 and Nrf2 transcription factors. Moreover, we discuss the role of IRE1 and PERK sensors in ALP activation during ER stress and the involvement of two deubiquitinases, Rpn11 and USP14, in these processes. Finally, we discuss the aspects that should be currently considered in the development of novel strategies that use proteasome activity as a therapeutic target for the treatment of human diseases.
Collapse
|
15
|
Johnson HWB, Lowe E, Anderl JL, Fan A, Muchamuel T, Bowers S, Moebius DC, Kirk C, McMinn DL. Required Immunoproteasome Subunit Inhibition Profile for Anti-Inflammatory Efficacy and Clinical Candidate KZR-616 ((2 S,3 R)- N-(( S)-3-(Cyclopent-1-en-1-yl)-1-(( R)-2-methyloxiran-2-yl)-1-oxopropan-2-yl)-3-hydroxy-3-(4-methoxyphenyl)-2-(( S)-2-(2-morpholinoacetamido)propanamido)propenamide). J Med Chem 2018; 61:11127-11143. [PMID: 30380863 DOI: 10.1021/acs.jmedchem.8b01201] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective immunoproteasome inhibition is a promising approach for treating autoimmune disorders, but optimal proteolytic active site subunit inhibition profiles remain unknown. We reveal here our design of peptide epoxyketone-based selective low molecular mass polypeptide-7 (LMP7) and multicatalytic endopeptidase complex subunit-1 (MECL-1) subunit inhibitors. Utilizing these and our previously disclosed low molecular mass polypeptide-2 (LMP2) inhibitor, we demonstrate a requirement of dual LMP7/LMP2 or LMP7/MECL-1 subunit inhibition profiles for potent cytokine expression inhibition and in vivo efficacy in an inflammatory disease model. These and additional findings toward optimized solubility led the design and selection of KZR-616 disclosed here and presently in clinical trials for treatment of rheumatic disease.
Collapse
Affiliation(s)
- Henry W B Johnson
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Eric Lowe
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Janet L Anderl
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Andrea Fan
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Tony Muchamuel
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Simeon Bowers
- Onyx Pharmaceuticals, an Amgen Subsidiary , South San Francisco , California 94080 , United States
| | - David C Moebius
- Onyx Pharmaceuticals, an Amgen Subsidiary , South San Francisco , California 94080 , United States
| | - Christopher Kirk
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| | - Dustin L McMinn
- Kezar Life Sciences , 4000 Shoreline Court, Suite 300 , South San Francisco , California 94080 , United States
| |
Collapse
|
16
|
Sakai S, Nishida A, Ohno M, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Andoh A. Ameliorating effects of bortezomib, a proteasome inhibitor, on development of dextran sulfate sodium-induced murine colitis. J Clin Biochem Nutr 2018; 63:217-223. [PMID: 30487672 PMCID: PMC6252295 DOI: 10.3164/jcbn.18-42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023] Open
Abstract
We examined the effect of bortezomib, a proteasome inhibitor, on the development of dextran sulfate sodium (DSS)-induced colitis in mice. DSS-colitis was induced by the administration of 3% DSS in water in C57BL/6J mice. Bortezomib was intraperitoneally administered daily for 9 days from the start of DSS. Ubiquitination of IκBα was evaluated by immunoblot. Bortezomib significantly ameliorated DSS-induced body weight loss and reduced the disease activity. The translocation of NF-κBp65 into the nucleus was markedly suppressed in the DSS + bortezomib group compared to the DSS group, but this difference was not detected in submucosal tissue. Ubiquitinated IκBα in the cytoplasm of colon epithelial cells was increased in the DSS + bortezomib group compared to the DSS group. In HT-29 cells, bortezomib blocked tumor necrosis factor-α (TNF-α)-induced nuclear translocation of NF-κB and this was accompanied by an increase in ubiquitinated IκBα in the cytoplasm. The mRNA expression of inflammatory mediators in colonic epithelial cells was significantly reduced by the treatment of bortezomib. Bortezomib inhibited the nuclear translocation of NF-κB in colonic epithelial cells by suppressing the degradation of IκBα and contributed to an improvement in DSS colitis. Our study suggests that bortezomib may be a new treatment option for IBD.
Collapse
Affiliation(s)
- Shigeki Sakai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Mitsushige Sugimoto
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| |
Collapse
|
17
|
Ogorevc E, Schiffrer ES, Sosič I, Gobec S. A patent review of immunoproteasome inhibitors. Expert Opin Ther Pat 2018; 28:517-540. [PMID: 29865878 DOI: 10.1080/13543776.2018.1484904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The ubiquitin-proteasome system is responsible for maintaining protein homeostasis and regulating a variety of cellular processes. The constitutive proteasome is expressed in all cells while the immunoproteasome (IP) is predominantly found in cells of hematopoietic origin. In other cells, the expression of IP can be induced under the influence of cytokines released by T cells during acute immune and stress responses. Inhibitors of IP are of significant interest, because it is expected that selective inhibition of the IP would cause fewer adverse effects. AREAS COVERED There is a considerable interest on patenting IP-specific inhibitors. Relevant patents and patent applications disclosing IP inhibitors are summarized and divided into two parts according to the chemical characteristics of compounds. We also briefly report on the biochemical methods used in the patents to profile the characteristics of IP inhibitors. EXPERT OPINION Several selective inhibitors of IP with a promising ability to address autoimmune and inflammatory diseases are being developed. Peptidic compounds are prevalent and the most advanced IP-selective compounds to date, ONX-0914 and KZR-616, are tripeptide epoxyketone-based molecules. However, some patents disclose that IP-selective inhibition is possible with compounds possessing non-peptidic scaffolds indicating countless possibilities to address inhibition of IP in the future.
Collapse
Affiliation(s)
- Eva Ogorevc
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | | | - Izidor Sosič
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
18
|
Athanasopoulou S, Chondrogianni N, Santoro A, Asimaki K, Delitsikou V, Voutetakis K, Fabbri C, Pietruszka B, Kaluza J, Franceschi C, Gonos ES. Beneficial Effects of Elderly Tailored Mediterranean Diet on the Proteasomal Proteolysis. Front Physiol 2018; 9:457. [PMID: 29765333 PMCID: PMC5938393 DOI: 10.3389/fphys.2018.00457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
Aging is a multifactorial process characterized by the accumulation of proteins undergoing oxidative modifications, either due to enhanced levels of oxidative stress or due to their decreased clearance; both facts are related to the establishment of chronic inflammatory processes. These processes are directly associated with functional and structural modifications of a key cellular component, namely the proteasome. In this study, levels of oxidized proteins, along with proteasome and immunoproteasome composition and activity on a selected group of 120 elderly volunteers were analyzed before and after the administration of a specific dietary protocol, based on an elderly tailored Mediterranean diet (the "NU-AGE diet"). A significant negative correlation between levels of oxidized/carbonylated proteins and proteasome function was confirmed, both before and after intervention. Furthermore, it was demonstrated that subgroups of non-frail subjects and women receive a greater benefit after the intervention, concerning specifically the proteasome content and activity. These data highlight the putative beneficial effects of Mediterranean diet on the major cellular proteolytic mechanism, the proteasome, in elderly people.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, Bologna, Italy
| | - Konstantina Asimaki
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Vasiliki Delitsikou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- C.I.G. Interdepartmental Centre “L. Galvani”, University of Bologna, Bologna, Italy
| | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Joanna Kaluza
- Department of Human Nutrition, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Institute of Neurological Sciences (IRCCS), Bologna, Italy
| | - Efstathios S. Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
19
|
Koerner J, Brunner T, Groettrup M. Inhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice. Oncotarget 2017; 8:50873-50888. [PMID: 28881611 PMCID: PMC5584212 DOI: 10.18632/oncotarget.15141] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
New treatment options and drug targets for colorectal carcinoma are a pressing medical need. Inflammation and pro-inflammatory cytokines produced by Th1 and Th17 cells like IL-6, TNF, IL-17 and IL-23 promote the development and growth of colorectal cancer (CRC). The immunoproteasome is a proteasome subtype highly expressed in immune cells but also in the intestine. Since the immunoproteasome promotes Th1 and Th17 differentiation and pro-inflammatory cytokine production, we investigated here whether deficiency or inhibition of the immunoproteasome subunit LMP7 would interfere with CRC development and exacerbation in preventive and therapeutic mouse models. Treatment with the LMP7 inhibitor ONX 0914 blocked tumor initiation and progression in either chemically-induced (AOM/DSS) or transgenic mouse models (ApcMin/+) of colon carcinogenesis. ONX 0914 treatment strongly reduced tumor numbers and CRC-associated loss of body weight while the survival rates were significantly enhanced. Moreover, genetic LMP7 deficiency markedly reduced the tumor burden in AOM/DSS induced wild type and ApcMin/+ mice. In conclusion, we show that the immunoproteasome is involved in CRC development and progression and we identify LMP7 as a new potential drug target for the treatment of CRC.
Collapse
Affiliation(s)
- Julia Koerner
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.,Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz (BITg), Kreuzlingen, Switzerland
| |
Collapse
|
20
|
Ghouzali I, Lemaitre C, Bahlouli W, Azhar S, Bôle-Feysot C, Meleine M, Ducrotté P, Déchelotte P, Coëffier M. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability. Biochim Biophys Acta Gen Subj 2016; 1861:3278-3288. [PMID: 27544233 DOI: 10.1016/j.bbagen.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal hyperpermeability has been reported in several intestinal and non-intestinal disorders. We aimed to investigate the role of the ubiquitin proteasome system in gut barrier regulation in two mice models: the water avoidance stress model (WAS) and a post-inflammatory model (post-TNBS). METHODS Both models were applied in C57BL/6 male mice (n=7-8/group); Proteasome was targeted by injection of a selective proteasome inhibitor or by using knock-out mice for β2i proteasome subunit. Finally, glutamine supplementation was evaluated. RESULTS In both models (WAS at day 10, post-TNBS at day 28), we observed an increase in proteasome trypsin-like activity and in inducible β2/constitutive β2 subunit protein expression ratio, associated with an increase in intestinal permeability. Moreover, intestinal hyperpermeability was blunted by intraperitoneal injection of selective proteasome inhibitor in WAS and post-TNBS mice. Of note, knock-out mice for the β2i subunit exhibited a significant decrease in intestinal permeability and fecal pellet output during WAS. Glutamine supplementation also improved colonic permeability in both models. CONCLUSIONS In conclusion, the proteasome system is altered in the colonic mucosa of WAS and post-TNBS mice with increased trypsin-like activity. Associated intestinal hyperpermeability was blunted by immunoproteasome inhibition.
Collapse
Affiliation(s)
- Ibtissem Ghouzali
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Lemaitre
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Wafa Bahlouli
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Saïda Azhar
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bôle-Feysot
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Mathieu Meleine
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Philippe Ducrotté
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France.
| |
Collapse
|
21
|
Groll M, Korotkov VS, Huber EM, de Meijere A, Ludwig A. Ein minimales β-Lacton-Gerüst für selektive β5c- oder β5i-Proteasominhibitoren. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Groll M, Korotkov VS, Huber EM, de Meijere A, Ludwig A. A Minimal β-Lactone Fragment for Selective β5c or β5i Proteasome Inhibitors. Angew Chem Int Ed Engl 2015; 54:7810-4. [PMID: 25973989 DOI: 10.1002/anie.201502931] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 11/09/2022]
Abstract
Broad-spectrum proteasome inhibitors are applied as anticancer drugs, whereas selective blockage of the immunoproteasome represents a promising therapeutic rationale for autoimmune diseases. We here aimed at identifying minimal structural elements that confer β5c or β5i selectivity on proteasome inhibitors. Based on the natural product belactosin C, we synthesized two β-lactones featuring a dimethoxybenzyl moiety and either a methylpropyl (pseudo-isoleucin) or an isopropyl (pseudo-valine) P1 side chain. Although the two compounds differ only by one methyl group, the isoleucine analogue is six times more potent for β5i (IC50=14 nM) than the valine counterpart. Cell culture experiments demonstrate the cell-permeability of the compounds and X-ray crystallography data highlight them as minimal fragments that occupy primed and non-primed pockets of the active sites of the proteasome. Together, these results qualify β-lactones as a promising lead-structure motif for potent nonpeptidic proteasome inhibitors with diverse pharmaceutical applications.
Collapse
Affiliation(s)
- Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany).
| | - Vadim S Korotkov
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany)
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching (Germany)
| | - Armin de Meijere
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany)
| | - Antje Ludwig
- Charité Universitätsmedizin Berlin CCM, Medizinische Klinik für Kardiologie und Angiologie, Charitéplatz 1, 10117 Berlin (Germany).
| |
Collapse
|
23
|
Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future directions. Curr Pharm Des 2014. [PMID: 23181576 DOI: 10.2174/1381612811319220018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome system (UPS) plays a vital role in maintaining protein homeostasis and regulating numerous cellular processes. The proteasome, a multi-protease complex, is the key component of the UPS and has been validated as a therapeutic target by the FDA's approval of bortezomib and carfilzomib. These proteasome inhibitor drugs have substantially improved outcomes in patients with hematological malignancies and are currently being investigated for other types of cancer as well as several other diseases. These approved proteasome inhibitors target the catalytic activity of both the constitutive proteasome and the immunoproteasome indiscriminately, and their inhibitory effects on the constitutive proteasome in normal cells are believed to contribute to unwanted side effects. In addition, selective immunoproteasome inhibition has been proposed to have unique effects on other diseases, including those involving aberrant immune function. Initially recognized for its role in the adaptive immune response, the immunoproteasome is often upregulated in disease states such as inflammatory diseases and cancer, suggesting functions beyond antigen presentation. In an effort to explore the immunoproteasome as a potential therapeutic target in these diseases, the development of immunoproteasome-specific inhibitors has become the focus of recent studies. Owing to considerable efforts by both academic and industry groups, immunoproteasome-selective inhibitors have now been identified and tested against several disease models. These inhibitors also provide a valuable set of chemical tools for investigating the biological function of the immunoproteasome. In this review, we will focus on the recent efforts towards the development of immunoproteasome-selective inhibitors.
Collapse
Affiliation(s)
- Zachary Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40536-0596, USA
| | | | | | | |
Collapse
|
24
|
Wagner J, Catto-Smith AG, Cameron DJS, Kirkwood CD. Pseudomonas infection in children with early-onset Crohn's disease: an association with a mutation close to PSMG1. Inflamm Bowel Dis 2013; 19:E58-9. [PMID: 22593026 DOI: 10.1002/ibd.23017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Ebstein F, Kloetzel PM, Krüger E, Seifert U. Emerging roles of immunoproteasomes beyond MHC class I antigen processing. Cell Mol Life Sci 2012; 69:2543-58. [PMID: 22382925 PMCID: PMC11114860 DOI: 10.1007/s00018-012-0938-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 01/09/2023]
Abstract
The proteasome is a multi-catalytic protein complex whose primary function is the degradation of abnormal or foreign proteins. Upon exposure of cells to interferons (IFNs), the β1i/LMP2, β2i/MECL-1, and β5i/LMP7 subunits are induced and incorporated into newly synthesized immunoproteasomes (IP), which are thought to function solely as critical players in the optimization of the CD8(+) T-cell response. However, the observation that IP are present in several non-immune tissues under normal conditions and/or following pathological events militates against the view that its role is limited to MHC class I presentation. In support of this concept, the recent use of genetic models deficient for β1i/LMP2, β2i/MECL-1, or β5i/LMP7 has uncovered unanticipated functions for IP in innate immunity and non-immune processes. Herein, we review recent data in an attempt to clarify the role of IP beyond MHC class I epitope presentation with emphasis on its involvement in the regulation of protein homeostasis, cell proliferation, and cytokine gene expression.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Peter-Michael Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
| | - Ulrike Seifert
- Institut für Biochemie, Charité-Universitätsmedizin Berlin Campus CVK, Oudenarderstr.16, 13347 Berlin, Germany
- Institut für Molekulare und Klinische Immunologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
26
|
Bousquet-Dubouch MP, Fabre B, Monsarrat B, Burlet-Schiltz O. Proteomics to study the diversity and dynamics of proteasome complexes: from fundamentals to the clinic. Expert Rev Proteomics 2012; 8:459-81. [PMID: 21819302 DOI: 10.1586/epr.11.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article covers the latest contributions of proteomics to the structural and functional characterization of proteasomes and their associated proteins, but also to the detection of proteasomes as clinical biomarkers in diseases. Proteasomes are highly heterogenous supramolecular complexes and constitute important cellular proteases controlling the pool of proteins involved in key cellular functions. The comprehension of the structure/function relationship of proteasomes is therefore of major interest in biology. Numerous biochemical methods have been employed to purify proteasomes, and have led to the identification of complexes of various compositions - depending on the experimental conditions and the type of strategy used. In association with protein separation and enrichment techniques, modern mass spectrometry instruments and mass spectrometry-based quantitative methods, they have led to unprecedented breakthroughs in the in-depth analysis of the diversity and dynamics of proteasome composition and localization under various stimuli or pathological contexts. Proteasome inhibitors are now used in clinics for the treatment of cancer, and recent studies propose that the proteasome should be considered as a predictive biomarker for various pathologies.
Collapse
|
27
|
Huber EM, Groll M. Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 2012; 51:8708-20. [PMID: 22711561 DOI: 10.1002/anie.201201616] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 01/30/2023]
Abstract
Proteolytic degradation is an essential cellular process which is primarily carried out by the 20S proteasome core particle (CP), a protease of 720 kDa and 28 individual subunits. As a result of its central functional role, the proteasome represents an attractive drug target that has been extensively investigated during the last decade and validated by the approval of bortezomib by the US Food and Drug Administration (FDA). Currently, several optimized second-generation proteasome inhibitors are being explored as anticancer drugs in clinical trials, and most of them target both constitutive proteasomes (cCPs) and immunoproteasomes (iCPs). However, selective inhibition of the iCPs, a distinct class of proteasomes predominantly expressed in immune cells, appears to be a promising therapeutic rationale for the treatment of autoimmune disorders. Although a few selective agents have already been identified, the recently determined crystal structure of the iCP will further promote the development and optimization of iCP-selective compounds.
Collapse
Affiliation(s)
- Eva Maria Huber
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | | |
Collapse
|
28
|
Huber EM, Groll M. Inhibitoren für das konstitutive Proteasom und das Immunoproteasom: aktuelle und zukünftige Tendenzen in der Medikamentenentwicklung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201616] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
CAMILLERI M, MADSEN K, SPILLER R, VAN MEERVELD BG, VERNE G, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24:503-12. [PMID: 22583600 PMCID: PMC5595063 DOI: 10.1111/j.1365-2982.2012.01921.x] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Defects in intestinal barrier function are associated with diseases of the gastrointestinal (GI) tract. There is growing evidence that increases in intestinal permeability plays a pathogenic role in diseases, such as inflammatory bowel disease (IBD) and celiac disease, and functional bowel disorders, such as irritable bowel syndrome (IBS). This review takes a unique translational approach to discuss the physiological and pathophysiological mechanisms involved in the regulation of intestinal barrier function in IBS. The review summarizes the components of the intestinal barrier including the tight junction complex within the epithelium, and the methods used to assess gut permeability both in vitro and in vivo. Throughout the review, the authors have attempted to critically review the latest research from both experimental animal models and human studies to appraise whether intestinal barrier dysfunction is a primary cause of functional GI disorders, such as IBS.…
Collapse
Affiliation(s)
- M. CAMILLERI
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, MN, USA
| | - K. MADSEN
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - R. SPILLER
- NIHR Biomedical Research Unit in the Nottingham Digestive Diseases Centre University Hospital, Nottingham, UK
| | - B G. VAN MEERVELD
- Department of Physiology, Oklahoma Center for Neuroscience, VA Medical Center, University of Oklahoma Health Sciences Center, OK, USA
| | - G.N. VERNE
- Division of Gastroenterology & Hepatology, University of Texas Medical Branch Galveston, TX, USA
| | | |
Collapse
|
30
|
Huber EM, Basler M, Schwab R, Heinemeyer W, Kirk CJ, Groettrup M, Groll M. Immuno- and constitutive proteasome crystal structures reveal differences in substrate and inhibitor specificity. Cell 2012; 148:727-38. [PMID: 22341445 DOI: 10.1016/j.cell.2011.12.030] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 12/02/2011] [Indexed: 01/19/2023]
Abstract
Constitutive proteasomes and immunoproteasomes shape the peptide repertoire presented by major histocompatibility complex class I (MHC-I) molecules by harboring different sets of catalytically active subunits. Here, we present the crystal structures of constitutive proteasomes and immunoproteasomes from mouse in the presence and absence of the epoxyketone inhibitor PR-957 (ONX 0914) at 2.9 Å resolution. Based on our X-ray data, we propose a unique catalytic feature for the immunoproteasome subunit β5i/LMP7. Comparison of ligand-free and ligand-bound proteasomes reveals conformational changes in the S1 pocket of β5c/X but not β5i, thereby explaining the selectivity of PR-957 for β5i. Time-resolved structures of yeast proteasome:PR-957 complexes indicate that ligand docking to the active site occurs only via the reactive head group and the P1 side chain. Together, our results support structure-guided design of inhibitory lead structures selective for immunoproteasomes that are linked to cytokine production and diseases like cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Garching D-85747, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Novel Pharmacological Approaches for Inflammatory Bowel Disease: Targeting Key Intracellular Pathways and the IL-23/IL-17 Axis. Int J Inflam 2012; 2012:389404. [PMID: 22506136 PMCID: PMC3312283 DOI: 10.1155/2012/389404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/28/2011] [Indexed: 12/13/2022] Open
Abstract
This review identifies possible pharmacological targets for inflammatory bowel disease (IBD) within the IL-23/IL-17 axis. Specifically, there are several targets within the IL-23/IL-17 pathways for potential pharmacological intervention with antibodies or small molecule inhibitors. These targets include TL1A (tumor necrosis factor-like molecule), DR3 (death receptor 3), IL-23, IL-17 and the receptors for IL-23 and IL-17. As related to IBD, there are also other novel pharmacological targets. These targets include inhibiting specific immunoproteasome subunits, blocking a key enzyme in sphingolipid metabolism (sphingosine kinase), and modulating NF-κB/STAT3 interactions. Several good approaches exist for pharmacological inhibition of key components in the IL-23 and IL-17 pathways. These approaches include specific monoclonal antibodies to TL1A, IL-17 receptor, Fc fusion proteins, specific antibodies to IL-17F, and small molecule inhibitors of IL-17 like Vidofludimus. Also, other potential approaches for targeted drug development in IBD include specific chemical inhibitors of SK, specific small molecule inhibitors directed against catalytic subunits of the immunoproteasome, and dual inhibitors of the STAT3 and NF-κB signal transduction systems. In the future, well-designed preclinical studies are still needed to determine which of these pharmacological approaches will provide drugs with the best efficacy and safety profiles for entrance into clinical trials.
Collapse
|
32
|
Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res 2012; 22:386-97. [PMID: 21940837 PMCID: PMC3266045 DOI: 10.1101/gr.124370.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/19/2011] [Indexed: 12/11/2022]
Abstract
Single variant or single gene analyses generally account for only a small proportion of the phenotypic variation in complex traits. Alternatively, gene set or pathway association analyses are playing an increasingly important role in uncovering genetic architectures of complex traits through the identification of systematic genetic interactions. Two dominant paradigms for gene set analyses are association analyses based on SNP genotypes and those based on gene expression profiles. However, gene-disease association can manifest in many ways, such as alterations of gene expression, genotype, and copy number; thus, an integrative approach combining multiple forms of evidence can more accurately and comprehensively capture pathway associations. We have developed a single statistical framework, Gene Set Association Analysis (GSAA), that simultaneously measures genome-wide patterns of genetic variation and gene expression variation to identify sets of genes enriched for differential expression and/or trait-associated genetic markers. Simulation studies illustrate that joint analyses of genomic data increase the power to detect real associations when compared with gene set methods that use only one genomic data type. The analysis of two human diseases, glioblastoma and Crohn's disease, detected abnormalities in previously identified disease-associated pathways, such as pathways related to PI3K signaling, DNA damage response, and the activation of NFKB. In addition, GSAA predicted novel pathway associations, for example, differential genetic and expression characteristics in genes from the ABC transporter family in glioblastoma and from the HLA system in Crohn's disease. These demonstrate that GSAA can help uncover biological pathways underlying human diseases and complex traits.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola Ancona
- Institute of Intelligent Systems for Automation National Research Council, Bari IT 70126, Italy
| | - Elizabeth R. Hauser
- Center for Human Genetics and Section of Medical Genetics, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Sayan Mukherjee
- Departments of Statistical Science, Computer Science, and Mathematics, Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina 27708, USA
| | - Terrence S. Furey
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, and Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
33
|
Henry L, Le Gallic L, Garcin G, Coux O, Jumez N, Roger P, Lavabre-Bertrand T, Martinez J, Meunier L, Stoebner P. Proteolytic activity and expression of the 20S proteasome are increased in psoriasis lesional skin. Br J Dermatol 2011; 165:311-20. [DOI: 10.1111/j.1365-2133.2011.10447.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Wagner J, Sim WH, Ellis JA, Ong EK, Catto-Smith AG, Cameron DJS, Bishop RF, Kirkwood CD. Interaction of Crohn's disease susceptibility genes in an Australian paediatric cohort. PLoS One 2010; 5:e15376. [PMID: 21079743 PMCID: PMC2975706 DOI: 10.1371/journal.pone.0015376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 08/24/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic susceptibility is an important contributor to the pathogenesis of Crohn's disease (CD). We investigated multiple CD susceptibility genes in an Australian paediatric onset CD cohort. Newly diagnosed paediatric onset CD patients (n = 72) and controls (n = 98) were genotyped for 34 single nucleotide polymorphisms (SNPs) in 18 genetic loci. Gene-gene interaction analysis, gene-disease phenotype analysis and genetic risk profiling were performed for all SNPs and all genes. Of the 34 SNPs analysed, four polymorphisms on three genes (NOD2, IL23R, and region 3p21) were significantly associated with CD status (p<0.05). All three CD specific paediatric polymorphisms on PSMG1 and TNFRSF6B showed a trend of association with p<0.1. An additive gene-gene interaction involving TLR4, PSMG1, TNFRSF6B and IRGM was identified with CD. Genes involved in microbial processing (TLR4, PSMG1, NOD2) were significantly associated either at the individual level or in gene-gene interactive roles. Colonic disease was significantly associated with disease SNP rs7517847 (IL23R) (p<0.05) and colonic and ileal/colonic disease was significantly associated with disease SNP rs125221868 (IBD5) and SLC22A4 & SLC22A4/5 variants (p<0.05). We were able to demonstrate genetic association of several genes to CD in a paediatric onset cohort. Several of the observed associations have not been reported previously in association with paediatric CD patients. Our findings demonstrate that CD genetic susceptibility in paediatric patients presents as a complex interaction between numerous genes.
Collapse
Affiliation(s)
- Josef Wagner
- Enteric Virus Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. THE JOURNAL OF IMMUNOLOGY 2010; 185:634-41. [PMID: 20525886 DOI: 10.4049/jimmunol.0903182] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proteasome, a multicatalytic protease, is responsible for the degradation of intracellular proteins. Stimulation of cells with inflammatory cytokines, such as IFN-gamma, leads to the replacement of the constitutive catalytic proteasome subunits by the inducible subunits low molecular mass polypeptide (LMP)2 (beta1i), multicatalytic endopeptidase complex-like-1 (beta2i), and LMP7 (beta5i), which are required for the production of certain MHC class I-restricted T cell epitopes. In this study, we investigated the effect of immunoproteasomes on the development of dextran sulfate sodium-induced colitis. Colitis induction in LMP2-, LMP7-, and multicatalytic endopeptidase complex-like-1-deficient mice caused reduced weight loss compared with wild-type mice. Although colon lengths were shortened in wild-type mice, no reduction was observed in immunoproteasome-deficient mice. In accordance with this, proinflammatory cytokines, such as TNF-alpha and IL-1beta, were not upregulated in these mice. Blockage of LMP7 by a novel LMP7-selective inhibitor (PR-957) strongly reduced pathological symptoms of dextran sulfate sodium-induced colitis. Production of numerous cytokines in PR-957-treated mice was suppressed, resulting in reduced inflammation and tissue destruction. Taken together, these results demonstrate that an immunoproteasome-specific inhibitor can be used to attenuate autoimmune diseases like colitis.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Constance, Konstanz, Germany.
| | | | | | | | | |
Collapse
|
36
|
Vasuri F, Capizzi E, Bellavista E, Mishto M, Santoro A, Fiorentino M, Capri M, Cescon M, Grazi GL, Grigioni WF, D’Errico-Grigioni A, Franceschi C. Studies on immunoproteasome in human liver. Part I: Absence in fetuses, presence in normal subjects, and increased levels in chronic active hepatitis and cirrhosis. Biochem Biophys Res Commun 2010; 397:301-6. [DOI: 10.1016/j.bbrc.2010.05.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 05/21/2010] [Indexed: 11/12/2022]
|