1
|
Systemic Administration of G-CSF Accelerates Bone Regeneration and Modulates Mobilization of Progenitor Cells in a Rat Model of Distraction Osteogenesis. Int J Mol Sci 2021; 22:ijms22073505. [PMID: 33800710 PMCID: PMC8037338 DOI: 10.3390/ijms22073505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.
Collapse
|
2
|
Gootjes EC, Kraan J, Buffart TE, Bakkerus L, Zonderhuis BM, Verhoef C, Verheul HM, Sleijfer S. CD276-Positive Circulating Endothelial Cells Do Not Predict Response to Systemic Therapy in Advanced Colorectal Cancer. Cells 2020; 9:cells9010124. [PMID: 31948091 PMCID: PMC7016770 DOI: 10.3390/cells9010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
CD276 can discriminate between tumor derived and normal CECs (circulating endothelial cells). We evaluated whether CD276+CEC is a clinically relevant biomarker to predict response to palliative systemic therapy in patients with metastatic colorectal cancer (mCRC). Samples were prospectively collected from patients with mCRC enrolled in the ORCHESTRA trial (NCT01792934). At baseline and after three cycles of 5-fluorouracil/leucovorin and oxaliplatin ± bevacizumab, CECs were measured by flowcytometry (CD34+CD45negCD146+DNA+; and CD276+). A clinically relevant cut-off value of (CD276+)CECs was determined as 100% sensitivity (and 80% specificity in 95% confidence interval) identifying patients with progressive disease within 6 months. There were 182 baseline samples and 133 follow up samples available for analysis. CEC and CD276+CEC counts significantly increased during treatment from 48 to 90 CEC/4 mL (p = 0.00) and from 14 to 33 CD276+CEC/4 mL (p = 0.00) at baseline and at first evaluation, respectively. CEC and CD276+CEC counts were not predictive for poor response (area under the curve (AUC) 0.53 for CEC and AUC 0.52 for CD276+CEC). Despite numerical changes during therapy, CEC and CD276+CEC counts do not adequately predict poor response to first line palliative systemic therapy in patients with mCRC.
Collapse
Affiliation(s)
- Elske C. Gootjes
- Department of Medical Oncology VUmc, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Tineke E. Buffart
- Department of Medical Oncology VUmc, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Gastrointestinal Oncology, Antoni van Leeuwenhoek, 1006 BE Amsterdam, The Netherlands
| | - Lotte Bakkerus
- Department of Medical Oncology VUmc, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Gastrointestinal Oncology, Antoni van Leeuwenhoek, 1006 BE Amsterdam, The Netherlands
| | - Barbara M. Zonderhuis
- Department of Surgical Oncology VUmc, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC–Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Henk M.W. Verheul
- Department of Medical Oncology VUmc, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Radboud UMC, 6525 GA Nijmegen, The Netherlands
- Correspondence:
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Herrera M, Galindo-Pumariño C, García-Barberán V, Peña C. A Snapshot of The Tumor Microenvironment in Colorectal Cancer: The Liquid Biopsy. Int J Mol Sci 2019; 20:ijms20236016. [PMID: 31795332 PMCID: PMC6929174 DOI: 10.3390/ijms20236016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular profile of liquid biopsies is emerging as an alternative to tissue biopsies in the clinical management of malignant diseases. In colorectal cancer, significant liquid biopsy-based biomarkers have demonstrated an ability to discriminate between asymptomatic cancer patients and healthy controls. Furthermore, this non-invasive approach appears to provide relevant information regarding the stratification of tumors with different prognoses and the monitoring of treatment responses. This review focuses on the tumor microenvironment components which are detected in blood samples of colorectal cancer patients and might represent potential biomarkers. Exosomes released by tumor and stromal cells play a major role in the modulation of cancer progression in the primary tumor microenvironment and in the formation of an inflammatory pre-metastatic niche. Stromal cells-derived exosomes are involved in driving mechanisms that promote tumor growth, migration, metastasis, and drug resistance, therefore representing substantial signaling mediators in the tumor-stroma interaction. Besides, recent findings of specifically packaged exosome cargo in Cancer-Associated Fibroblasts of colorectal cancer patients identify novel exosomal biomarkers with potential clinical applicability. Furthermore, additional different signals emitted from the tumor microenvironment and also detectable in the blood, such as soluble factors and non-tumoral circulating cells, arise as novel promising biomarkers for cancer diagnosis, prognosis, and treatment response prediction. The therapeutic potential of these factors is still limited, and studies are in their infancy. However, innovative strategies aiming at the inhibition of tumor progression by systemic exosome depletion, exosome-mediated circulating tumor cell capturing, and exosome-drug delivery systems are currently being studied and may provide considerable advantages in the near future.
Collapse
Affiliation(s)
- Mercedes Herrera
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Cristina Galindo-Pumariño
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
| | - Vanesa García-Barberán
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Laboratorio de Oncología Molecular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| | - Cristina Peña
- Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá University, 28034 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (V.G.-B.); (C.P.)
| |
Collapse
|
4
|
Otto W, Macrae F, Sierdziński J, Smaga J, Król M, Wilińska E, Zieniewicz K. Microsatellite instability and manifestations of angiogenesis in stage IV of sporadic colorectal carcinoma. Medicine (Baltimore) 2019; 98:e13956. [PMID: 30608431 PMCID: PMC6344194 DOI: 10.1097/md.0000000000013956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis represents one of the critical mechanisms that facilitates carcinoma development. The study objective was to evaluate whether the microsatellite instability of colorectal carcinoma has impact on the angiogenesis activity in liver metastases.In a cohort of 80 randomly selected patients with stage IV colorectal carcinoma, 30% were recognized as microsatellite unstable (Microsatellite instability high-frequency (MSI-H)). The endothelial progenitor cell fraction (CD309+) was counted within the subpopulation of CD34+CD45+ cell and CD34+CD45- cells by flow cytometer. vascular endothelial growth factor (VEGF) factor levels were quantified in serum samples by enzyme-linked immunosorbent assay (ELISA). A control group consisted of 36 healthy volunteers. The relationship of genomic instability to angiogenesis activity was evaluated by multivariate analysis in comparison to the controls, adopting a P < .05 value as statistically significant.The expression of endothelial progenitor cells (EPCs) and VEGF was significantly higher in MSI-H compared to both microsatellite stability (MSS) patients and healthy controls (P < .008). Multi-parametric analysis showed microsatellite instability (OR=9.12, P < .01), metastases in both lobes (OR = 32.83, P < .001) and simultaneous metastases outside liver (OR = 8.32, P < .01), as independent factors associated with increased angiogenesis as assessed by measures of EPC and VEGF. A higher percentage of EPCs within the white blood cell fraction (total % EPCs / white blood cells (WBC)) and higher serum concentrations of VEGF were present in patients with MSI-H colorectal cancer, and not with MSS cancers (P < .001).MSI-H patients with colorectal cancer metastases are associated with the overexpression of circulating EPCs and VEGF, potentially driving angiogenesis. This should be considered in therapeutic decision-making.
Collapse
Affiliation(s)
| | - Finlay Macrae
- Department of Colorectal Medicine and Genetics, The Royal Melbourne Hospital, and Department of Medicine, The University of Melbourne, Australia
| | | | | | - Maria Król
- Department of Oncology, Hematology & Internal Medicine
| | - Ewa Wilińska
- Department of Pathology Central Teaching Hospital, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | | |
Collapse
|
5
|
Li Y, Liu J, Zhao Z, Wen L, Li H, Ren J, Liu H. Correlation between circulating endothelial progenitor cells and serum carcinoembryonic antigen level in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50:307-312. [PMID: 29377980 DOI: 10.1093/abbs/gmx147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating endothelial progenitor cells (cEPCs) play an important role in cancer development. Previous studies showed that serum carcinoembryonic antigen (CEA) levels and the number of circulating endothelial progenitor cells (cEPCs) in the peripheral blood are both involved in tumor neoangiogenesis, and can be used for monitoring tumor progression, recurrence, metastasis, and therapeutic responses. However, the clinical relevance of these biomarkers remains unknown. In this study, 40 colorectal cancer (CRC) patients and 17 healthy volunteers were recruited and the amount of cEPCs in the peripheral blood was measured by flow cytometry. The serum CEA level was determined by CEA-RIACT assay. Results showed that cEPC level positively correlated with the stage of the disease, but not with the age and gender of the patients. Moreover, patients with higher serum CEA levels had higher cEPC levels. These results provide clinical evidence for a correlation between two commonly used biomarkers. Further understanding the role of serum CEA in cEPC-mediated tumor vascularization may improve clinical CRC diagnosis and provide useful insights into the design of therapeutic interventions that target tumor vasculature.
Collapse
Affiliation(s)
- Yuanxiang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheyan Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huili Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Danova M, Comolli G, Manzoni M, Torchio M, Mazzini G. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation. Mol Clin Oncol 2016; 4:909-917. [PMID: 27284422 DOI: 10.3892/mco.2016.823] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/11/2015] [Indexed: 12/19/2022] Open
Abstract
Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer.
Collapse
Affiliation(s)
- Marco Danova
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuditta Comolli
- Microbiology and Virology, Biotechnology Laboratories, IRCCS San Matteo Foundation, I-27100 Pavia, Italy
| | | | - Martina Torchio
- Internal Medicine and Medical Oncology, Vigevano Hospital, ASST Pavia, I-27029 Vigevano, Italy
| | - Giuliano Mazzini
- Molecular Genetics Institute, National Research Council and Biology and Biotechnology Department 'L. Spallanzani', University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
7
|
Pak L, Noso Y, Chaizhunusova N, Manambaeva Z, Adylkhanov T, Takeichi N, Olzhaev S, Aldyngurov D, Tuleutayeva R, Argynbekova A, Tanysheva G, Zhazykbayeva L, Baissalbayeva A, Rakhypbekov T. Disorder of Endothelia Vessels' Functional State with Malignant Tumors in Patients Exposed Anthropogenic Radiation. Asian Pac J Cancer Prev 2016; 17:575-9. [DOI: 10.7314/apjcp.2016.17.2.575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|