1
|
Shoukat A, Saqib ZA, Akhtar J, Aslam Z, Pitann B, Hossain MS, Mühling KH. Zinc and Silicon Nano-Fertilizers Influence Ionomic and Metabolite Profiles in Maize to Overcome Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1224. [PMID: 38732438 PMCID: PMC11085825 DOI: 10.3390/plants13091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize's salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.
Collapse
Affiliation(s)
- Abbas Shoukat
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Zulfiqar Ahmad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Javaid Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Md. Sazzad Hossain
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
- Department of Agronomy and Haor Agriculture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Karl Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| |
Collapse
|
2
|
Vendramini THA, Amaral AR, Rentas MF, Nogueira JPDS, Pedrinelli V, de Oliveira VV, Zafalon RVA, Brunetto MA. Ketogenic diets: A systematic review of current scientific evidence and possible applicability in dogs and cats. J Anim Physiol Anim Nutr (Berl) 2024; 108:541-556. [PMID: 38091342 DOI: 10.1111/jpn.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 03/06/2024]
Abstract
Ketogenic diets (KD) have been used in the treatment of epilepsy in humans for around a century and, more recently, they have been implanted for cancer patients, as well as in the treatment of obesity. This type of diet consists of high-fat levels, an adequate amount of protein and restricted carbohydrates, or high medium-chain triglycerides. Recently, the ketogenic diet has gained attention in veterinary medicine and studies were published evaluating the effects of KD in dogs with epilepsy. The objective of this review was to highlight recent studies about the application of KD in dogs and cats, to describe the neurobiochemical mechanisms through which KD improves epilepsy crisis, and their adverse effects. Studies were identified by a systematic review of literature available on PubMed, Embase, and Scopus. All cohort and case-control studies were included, and all articles were exported to Mendeley® citation manager, and duplicates were automatically removed. Seven articles and three conference abstracts conducted with dogs were included in the present study. There is evidence that the consumption of diets with medium-chain triglycerides increases the concentration of circulating ketone bodies and improves epilepsy signs, although these diets have higher carbohydrate and lower fat content when compared to the classic KD.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa R Amaral
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana F Rentas
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliana P D S Nogueira
- Department of Research & Development, Archer Daniels Midland Company (ADM), Animal Nutrition, Paulínia, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vinicius V de Oliveira
- Veterinary Nutrology Service, Teaching Veterinary Hospital, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | |
Collapse
|
3
|
Jiang J, Yang J, Chen B, Li J, Zhang T, Tan D, Tang B, Wei Q. The Impact of Nutrient Supply on Prostate Cancer Risk Worldwide. Nutrients 2023; 15:5131. [PMID: 38140390 PMCID: PMC10747001 DOI: 10.3390/nu15245131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
We aim to explore the association between nutrient supply and the incidence of prostate cancer globally. We utilized national nutrient supply data from the Food and Agriculture Organization of the United Nations for 150 countries, including the average supply of total protein (APS), animal protein (AAPS), fat (AFS), animal protein/total protein ratio (ATR), and share of dietary energy supply derived from cereals, roots, and tubers (CR). Prostate cancer incidence data were sourced from the Global Burden Disease 2019 (GBD2019). Correlation, regression analyses, and subgroup analysis were conducted. Our findings imply that incidence of prostate cancer is significantly correlated to APS (ρ = 0.394, p < 0.01), AAPS (ρ = 0.560, p < 0.01), AFS (ρ = 0.522, p < 0.01), ATR (ρ = 0.592, p < 0.01), and CR (ρ = -0.667, p < 0.01). After adjusting for confounders, regression analysis showed linear relationships between the AAPS (β = 0.605, p = 0.006), ATR (β = 70.76, p = 0.005), CR (β = -1.4451, p < 0.01), and age-standardized incidence rates (ASIRs) of prostate cancer, while no association was observed with APS (β = 0.030, p = 0.483) or AFS (β = 0.237, p = 0.405). Subgroup analysis suggested that dietary supply indicators were associated with ASIR in middle, middle-high, and high SDI, but not in countries with low and middle-low SDI. In summary, prostate cancer rates globally correlate significantly with AAPS, ATR, and CR, but not with APS and AFS. When considering the SDI of countries, the relationship is generally more pronounced in economically advanced nations, but not evident in low and middle-low SDI countries.
Collapse
Affiliation(s)
- Jinjiang Jiang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Jie Yang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Bo Chen
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Jinze Li
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Ting Zhang
- School of Basic Medicine, Harbin Medical Hospital, Harbin 150000, China;
| | - Daqing Tan
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Bo Tang
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu 610041, China; (J.J.); (J.Y.); (B.C.); (J.L.); (D.T.); (B.T.)
| |
Collapse
|
4
|
Bhuiyan NZ, Hasan MK, Mahmud Z, Hossain MS, Rahman A. Prevention of Alzheimer's disease through diet: An exploratory review. Metabol Open 2023; 20:100257. [PMID: 37781687 PMCID: PMC10539673 DOI: 10.1016/j.metop.2023.100257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction This exploratory review article describes about the genetic factors behind Alzheimer's disease (AD), their association with foods, and their relationships with cognitive impairment. It explores the dietary patterns and economic challenges in AD prevention. Methods Scopus, PubMed and Google Scholar were searched for articles that examined the relationships between Diets, Alzheimer's Disease (AD), and Socioeconomic conditions in preventative Alzheimer's disease studies. Graphs and Network analysis data were taken from Scopus under the MeSH search method, including words, Alzheimer's, APoE4, Tau protein, APP, Amyloid precursor protein, Beta-Amyloid, Aβ, Mediterranean Diet, MD, DASH diet, MIND diet, SES, Socioeconomic, Developed country, Underdeveloped country, Preventions. The network analysis was done through VOS viewer. Results Mediterranean diet (MD) accurately lowers AD (Alzheimer's Disease) risk to 53% and 35% for people who follow it moderately. MIND scores had a statistically significant reduction in AD rate compared to those in the lowest tertial (53% and 35% reduction, respectively). Subjects with the highest adherence to the MD and DASH had a 54% and 39% lower risk of developing AD, respectively, compared to those in the lowest tertial. Omega-6, PUFA, found in nuts and fish, can play most roles in the clearance of Aβ. Vitamin D inhibits induced fibrillar Aβ apoptosis. However, the high cost of these diet components rise doubt about the effectiveness of AD prevention through healthy diets. Conclusion The finding of this study revealed an association between diet and the effects of the chemical components of foods on AD biomarkers. More research is required to see if nutrition is a risk or a protective factor for Alzheimer's disease to encourage research to be translated into therapeutic practice and to clarify nutritional advice.
Collapse
Affiliation(s)
- Nusrat Zahan Bhuiyan
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Sabbir Hossain
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Abolarinwa TO, Ajose DJ, Oluwarinde BO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Plant-derived nanoparticles as alternative therapy against Diarrheal pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2022; 13:1007115. [PMID: 36590407 PMCID: PMC9797601 DOI: 10.3389/fmicb.2022.1007115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is a condition in which feces is discharged from the bowels frequently and in a liquid form. It is one of the frequent causes of morbidity and mortality in developing countries. The impact of Diarrhea is worsened by the increasing incidence of antimicrobial resistance among the causative agents, and this is now categorized as a global healthcare challenge. Antimicrobial resistance among Diarrheal pathogens also contributes to extended infection durations, and huge economic loss even in countries with advanced public health policies. The ever-increasing incidence of antimicrobial resistance including the contraindications arising from the administration of antibiotics in some Diarrheal cases highlights a crucial need for the development of novel non-antibiotic alternative agents for therapeutic and biocontrol applications. One such intervention includes the application of plant-derived nanoparticles (PDNPs) with novel antimicrobial properties. Given their small size and large surface area to volume ratio, PDNPs can attack target bacterial cell walls to generate reactive oxygen species that may simultaneously disrupt bacteria cell components such as DNA and proteins leading to cell damage or death. This potential can make it very difficult for pathogenic organisms to develop resistance against these antibacterial agents. In this review, we provide a critical overview on the antimicrobial resistance crisis among Diarrheagenic bacteria. We also discuss the evidence from the existing literature to support the potential associated with the use of PDNPs as alternative therapeutic agents for multidrug resistant and antibiotics administer contraindicated bacteria that are associated with Diarrhea.
Collapse
Affiliation(s)
- Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Center, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa,*Correspondence: Collins Njie Ateba,
| |
Collapse
|
6
|
Rapid evaluation method of eating quality based on near-infrared spectroscopy for composition and physicochemical properties analysis of rice grains. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Fels L, Ruf F, Bunzel M. Quantification of Isomaltulose in Food Products by Using Heteronuclear Single Quantum Coherence NMR-Experiments. Front Nutr 2022; 9:928102. [PMID: 35832046 PMCID: PMC9271938 DOI: 10.3389/fnut.2022.928102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Isomaltulose is a commonly used sweetener in sports nutrition and in products intended for consumption by diabetics. Because previously established chromatographic methods for quantification of isomaltulose suffer from long analysis times (60–210 min), faster quantitative approaches are required. Here, an HSQC (heteronuclear single quantum coherence) experiment with reduced interscan delay was established in order to quantify isomaltulose next to potential additional sugars such as d-glucose, d-fructose, d-galactose, sucrose, lactose, and maltose in 53 min. By using HSQC coupled to non-uniform sampling (NUS) as well as ASAP-HSQC (acceleration by sharing adjacent polarization), analysis times were reduced to a few minutes. Application of NUS-HSQC with reduced interscan delay takes 27 min, resulting in accurate and precise data. In principle, application of ASAP-HSQC approaches (with analysis times as low as 6 min) can be used; however, precision data may not suffice all applications.
Collapse
|
8
|
An Y, Li Y, Bian N, Ding X, Chang X, Liu J, Wang G. Different Interactive Effects of Metformin and Acarbose With Dietary Macronutrient Intakes on Patients With Type 2 Diabetes Mellitus: Novel Findings From the MARCH Randomized Trial in China. Front Nutr 2022; 9:861750. [PMID: 35558742 PMCID: PMC9087800 DOI: 10.3389/fnut.2022.861750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Antidiabetic oral agents and nutrition management are frequently used together as first-line therapies for type 2 diabetes mellitus (T2DM). However, less is known about their interaction. The interactive effect of two classic antidiabetic medications, namely, acarbose and metformin, with dietary intakes of macronutrients on glycemic control and cardiometabolic risk factors was investigated in the metformin and acarbose in Chinese as the initial hypoglycemic treatment (MARCH) randomized clinical trial. The patients with newly diagnosed T2DM from China were included in the trial. Participants were randomized to receive either metformin or acarbose monotherapy as the initial treatment, followed by a 24-week treatment phase, during which add-on therapy was used if necessary. Dietary intakes of carbohydrate, protein, fat, and total energy were calculated by a 24-h food diary recall method. Linear mixed-effect models combined with a subgroup analysis were used to investigate independent and interactive effects of drugs and diet on clinical outcomes. A data analysis was performed on 551 of the 788 patients randomly assigned to treatment groups. Metformin therapy was independently associated with higher triglycerides (TGs, β = 0.471, P = 0.003), 2 h postprandial plasma glucose (2hPPG, β = 0.381, P = 0.046) but lower low-density lipoprotein cholesterol (LDL-C, β = −0.149, P = 0.013) compared with acarbose therapy. Higher carbohydrates and lower fat intakes were independently associated with poorer glycemic control, less weight loss, and greater insulin secretion. Higher total energy intake was also independently associated with higher fasting (β = 0.0002, P = 0.001) and postprandial blood glucose (β = 0.0004, P = 0.001). Interaction and subgroup analyses demonstrated that glucagon-like peptide-1 (GLP-1) was positively related to total energy (β = 0.268, P = 0.033), carbohydrates intake, and insulin secretion (β = 2,045.2, P = 0.003) only in the acarbose group, while systolic blood pressure (SBP) was negatively related to protein intake in the metformin group (β = 23.21, P = 0.014). The results of this study showed that metformin and acarbose mainly exerted different interactive effects with dietary energy, carbohydrate, and protein intakes on GLP-1 secretion, insulin release, and SBP. The interaction between drug therapy and nutrition intervention in glycemia highlights the complexity of combination therapy.
Collapse
Affiliation(s)
- Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yinhui Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nannan Bian
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Ding
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaona Chang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Li N, Guo X, Sun C, Lowe S, Su W, Song Q, Wang H, Liang Q, Liang M, Ding X, Qu G, Ma S, Liu H, Sun Y. Dietary carbohydrate intake is associated with a lower risk of breast cancer: a meta-analysis of cohort studies. Nutr Res 2022; 100:70-92. [DOI: 10.1016/j.nutres.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
|
10
|
Wu L, Xie X, Liang T, Ma J, Yang L, Yang J, Li L, Xi Y, Li H, Zhang J, Chen X, Ding Y, Wu Q. Integrated Multi-Omics for Novel Aging Biomarkers and Antiaging Targets. Biomolecules 2021; 12:39. [PMID: 35053186 PMCID: PMC8773837 DOI: 10.3390/biom12010039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is closely related to the occurrence of human diseases; however, its exact biological mechanism is unclear. Advancements in high-throughput technology provide new opportunities for omics research to understand the pathological process of various complex human diseases. However, single-omics technologies only provide limited insights into the biological mechanisms of diseases. DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform certain biological functions together. In this review, we summarize multi-omics methods based on the most relevant biomarkers in single-omics to better understand molecular functions and disease causes. The integration of multi-omics technologies can systematically reveal the interactions among aging molecules from a multidimensional perspective. Our review provides new insights regarding the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets. Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics, and systems biology contribute to the identification of new candidate biomarkers for aging and novel targets for antiaging interventions.
Collapse
Affiliation(s)
- Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Juan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Yu Xi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Haixin Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (J.M.); (X.C.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (L.W.); (X.X.); (T.L.); (L.Y.); (J.Y.); (L.L.); (Y.X.); (H.L.); (J.Z.)
| |
Collapse
|
11
|
Rivero-Segura NA, Bello-Chavolla OY, Barrera-Vázquez OS, Gutierrez-Robledo LM, Gomez-Verjan JC. Promising biomarkers of human aging: In search of a multi-omics panel to understand the aging process from a multidimensional perspective. Ageing Res Rev 2020; 64:101164. [PMID: 32977058 DOI: 10.1016/j.arr.2020.101164] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
The aging process has been linked to the occurrence of chronic diseases and functional impairments, including cancer, sarcopenia, frailty, metabolic, cardiovascular, and neurodegenerative diseases. Nonetheless, aging is highly variable and heterogeneous and represents a challenge for its characterization. In this sense, intrinsic capacity (IC) stands as a novel perspective by the World Health Organization, which integrates the individual wellbeing, environment, and risk factors to understand aging. However, there is a lack of quantitative and qualitative attributes to define it objectively. Therefore, in this review we attempt to summarize the most relevant and promising biomarkers described in clinical studies at date over different molecular levels, including epigenomics, transcriptomics, proteomics, metabolomics, and the microbiome. To aid gerontologists, geriatricians, and biomedical researchers to understand the aging process through the IC. Aging biomarkers reflect the physiological state of individuals and the underlying mechanisms related to homeostatic changes throughout an individual lifespan; they demonstrated that aging could be measured independently of time (that may explain its heterogeneity) and to be helpful to predict age-related syndromes and mortality. In summary, we highlight the areas of opportunity and gaps of knowledge that must be addressed to fully integrate biomedical findings into clinically useful tools and interventions.
Collapse
Affiliation(s)
| | - O Y Bello-Chavolla
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - O S Barrera-Vázquez
- Departamento de Famacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - J C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría, Mexico.
| |
Collapse
|
12
|
Klotz LO, Simm A. Altern und Ernährung. Z Gerontol Geriatr 2020; 53:283-284. [DOI: 10.1007/s00391-020-01741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|