1
|
Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic Nervous System and Atherosclerosis. Int J Mol Sci 2023; 24:13132. [PMID: 37685939 PMCID: PMC10487841 DOI: 10.3390/ijms241713132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Atherosclerosis is characterized by the narrowing of the arterial lumen due to subendothelial lipid accumulation, with hypercholesterolemia being a major risk factor. Despite the recent advances in effective lipid-lowering therapies, atherosclerosis remains the leading cause of mortality globally, highlighting the need for additional therapeutic strategies. Accumulating evidence suggests that the sympathetic nervous system plays an important role in atherosclerosis. In this article, we reviewed the sympathetic innervation in the vasculature, norepinephrine synthesis and metabolism, sympathetic activity measurement, and common signaling pathways of sympathetic activation. The focus of this paper was to review the effectiveness of pharmacological antagonists or agonists of adrenoceptors (α1, α2, β1, β2, and β3) and renal denervation on atherosclerosis. All five types of adrenoceptors are present in arterial blood vessels. α1 blockers inhibit atherosclerosis but increase the risk of heart failure while α2 agonism may protect against atherosclerosis and newer generations of β blockers and β3 agonists are promising therapies against atherosclerosis; however, new randomized controlled trials are warranted to investigate the effectiveness of these therapies in atherosclerosis inhibition and cardiovascular risk reduction in the future. The role of renal denervation in atherosclerosis inhibition in humans is yet to be established.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Jack Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Michelle C. Maier
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Mark A. Myers
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3350, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3216, Australia
| | - Christopher G. Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine & Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Kate M. Denton
- Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
2
|
Moriarty JM, Tung R, Bradfield JS, McWilliams J, Lee EW, Kuo MD. Renal Denervation: A Novel Therapy at the Crossroads of Imaging, Intervention, and Innovation. ACTA ACUST UNITED AC 2015; 21:312-6. [PMID: 26384401 DOI: 10.1177/2211068215605838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 11/15/2022]
Abstract
Hypertension (HTN) is one of the most significant medical problems affecting society today. The estimated 76 million Americans with hypertension represent a significant public health problem, contributing to cardiac, vascular, renal, and neurovascular morbidity and mortality. HTN is the most common indication for lifelong pharmacologic treatment, mainly because of the incontrovertible reductions in cardiovascular events with blood pressure (BP) reduction and control. However, despite the availability and potency of multiple different antihypertensive drugs, up to half of American patients have BPs above the recommended target. Given the overwhelming evidence of both the cost to society of HTN and the benefits that are accrued from improved BP control, alternatives or adjuncts to current management options have been sought to aid in treatment of these patients. Over the past few years, a device-based approach involving modulation of the autonomic nervous system, termed renal denervation, has evolved to meet this challenge. With early trials showing startlingly good results, with few side effects, multiple devices were fast-tracked to clinical trials and hence to the market. However, larger trials have shone an unfavorable light on the field, with concerns about the short- and long-term effectiveness, diverting attention back to operational and procedural details. Despite this, image-guided manipulation of the sympathetic nervous system to treat HTN remains a fertile area of laboratory and clinical research.
Collapse
Affiliation(s)
- John M Moriarty
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Roderick Tung
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Edward W Lee
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael D Kuo
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hilbert S, Rogge C, Papageorgiou P, Hindricks G, Bollmann A. Successful single-sided renal denervation in drug-resistant hypertension and ventricular tachycardia. Clin Res Cardiol 2014; 104:279-81. [PMID: 25384356 DOI: 10.1007/s00392-014-0790-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/04/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Sebastian Hilbert
- Department of Electrophysiology, Heart Center Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | | | | | | | | |
Collapse
|