1
|
Werlein C, Ackermann M, Stark H, Shah HR, Tzankov A, Haslbauer JD, von Stillfried S, Bülow RD, El-Armouche A, Kuenzel S, Robertus JL, Reichardt M, Haverich A, Höfer A, Neubert L, Plucinski E, Braubach P, Verleden S, Salditt T, Marx N, Welte T, Bauersachs J, Kreipe HH, Mentzer SJ, Boor P, Black SM, Länger F, Kuehnel M, Jonigk D. Inflammation and vascular remodeling in COVID-19 hearts. Angiogenesis 2023; 26:233-248. [PMID: 36371548 PMCID: PMC9660162 DOI: 10.1007/s10456-022-09860-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
A wide range of cardiac symptoms have been observed in COVID-19 patients, often significantly influencing the clinical outcome. While the pathophysiology of pulmonary COVID-19 manifestation has been substantially unraveled, the underlying pathomechanisms of cardiac involvement in COVID-19 are largely unknown. In this multicentre study, we performed a comprehensive analysis of heart samples from 24 autopsies with confirmed SARS-CoV-2 infection and compared them to samples of age-matched Influenza H1N1 A (n = 16), lymphocytic non-influenza myocarditis cases (n = 8), and non-inflamed heart tissue (n = 9). We employed conventional histopathology, multiplexed immunohistochemistry (MPX), microvascular corrosion casting, scanning electron microscopy, X-ray phase-contrast tomography using synchrotron radiation, and direct multiplexed measurements of gene expression, to assess morphological and molecular changes holistically. Based on histopathology, none of the COVID-19 samples fulfilled the established diagnostic criteria of viral myocarditis. However, quantification via MPX showed a significant increase in perivascular CD11b/TIE2 + -macrophages in COVID-19 over time, which was not observed in influenza or non-SARS-CoV-2 viral myocarditis patients. Ultrastructurally, a significant increase in intussusceptive angiogenesis as well as multifocal thrombi, inapparent in conventional morphological analysis, could be demonstrated. In line with this, on a molecular level, COVID-19 hearts displayed a distinct expression pattern of genes primarily coding for factors involved in angiogenesis and epithelial-mesenchymal transition (EMT), changes not seen in any of the other patient groups. We conclude that cardiac involvement in COVID-19 is an angiocentric macrophage-driven inflammatory process, distinct from classical anti-viral inflammatory responses, and substantially underappreciated by conventional histopathologic analysis. For the first time, we have observed intussusceptive angiogenesis in cardiac tissue, which we previously identified as the linchpin of vascular remodeling in COVID-19 pneumonia, as a pathognomic sign in affected hearts. Moreover, we identified CD11b + /TIE2 + macrophages as the drivers of intussusceptive angiogenesis and set forward a putative model for the molecular regulation of vascular alterations.
Collapse
Affiliation(s)
- Christopher Werlein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Helge Stark
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Harshit R Shah
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | | | | | | | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan Kuenzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Dermatology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan Lukas Robertus
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Marius Reichardt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Anne Höfer
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Lavinia Neubert
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Edith Plucinski
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Stijn Verleden
- Department of Thoracic Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Tim Salditt
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Tobias Welte
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Hans-Heinrich Kreipe
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Steven J Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Aachen, Germany
- Institute of Pathology and Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Stephen M Black
- Department of Cellular Biology and Pharmacology Translational Medicine, Florida International University, Florida, USA
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Mark Kuehnel
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany.
| |
Collapse
|
2
|
Wu X, Qian L, Zhao H, Lei W, Liu Y, Xu X, Li J, Yang Z, Wang D, Zhang Y, Zhang Y, Tang R, Yang Y, Tian Y. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res Rev 2023; 83:101809. [PMID: 36442720 DOI: 10.1016/j.arr.2022.101809] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis is a pathological process caused by abnormal wound healing response, which often leads to excessive deposition of extracellular matrix, distortion of organ architecture, and loss of organ function. Aging is an important risk factor for the development of organ fibrosis. C-X-C receptor 4 (CXCR4) is the predominant chemokine receptor on fibrocytes, C-X-C motif ligand 12 (CXCL12) is the only ligand of CXCR4. Accumulated evidence have confirmed that CXCL12/CXCR4 can be involved in multiple pathological mechanisms in fibrosis, such as inflammation, immunity, epithelial-mesenchymal transition, and angiogenesis. In addition, CXCL12/CXCR4 have also been shown to improve fibrosis levels in many organs including the heart, liver, lung and kidney; thus, they are promising targets for anti-fibrotic therapy. Notably, inhibitors of CXCL12 or CXCR4 also play an important role in various fibrosis-related diseases. In summary, this review systematically summarizes the role of CXCL12/CXCR4 in fibrosis, and this information is of great significance for understanding CXCL12/CXCR4. This will also contribute to the design of further studies related to CXCL12/CXCR4 and fibrosis, and shed light on potential therapies for fibrosis.
Collapse
Affiliation(s)
- Xue Wu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Lu Qian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Wangrui Lei
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yanqing Liu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Xiaoling Xu
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiawen Li
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Du Wang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yuchen Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yan Zhang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Ran Tang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| | - Ye Tian
- Deparment of Neurology, Xi'an No.3 Hospital, Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Jackson EK, Gillespie DG, Tofovic SP. DPP4 Inhibition, NPY 1-36, PYY 1-36, SDF-1 α, and a Hypertensive Genetic Background Conspire to Augment Cell Proliferation and Collagen Production: Effects That Are Abolished by Low Concentrations of 2-Methoxyestradiol. J Pharmacol Exp Ther 2020; 373:135-148. [PMID: 32015161 PMCID: PMC7174788 DOI: 10.1124/jpet.119.263467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
By reducing their metabolism, dipeptidyl peptidase 4 inhibition (DPP4I) enhances the effects of numerous peptides including neuropeptide Y1-36 (NPY1-36), peptide YY1-36 (PYY1-36), and SDF-1α Studies show that separately NPY1-36, PYY1-36 and SDF-1α stimulate proliferation of, and collagen production by, cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs), particularly in cells isolated from genetically hypertensive rats. Whether certain combinations of these factors, in the absence or presence of DPP4I, are more profibrotic than others is unknown. Here we contrasted 24 different combinations of conditions (DPP4I, hypertensive genotype and physiologic levels [3 nM] of NPY1-36, PYY1-36, or SDF-1α) on proliferation of, and [3H]-proline incorporation by, CFs, PGVSMCs, and GMCs. In all three cell types, the various treatment conditions differentially increased proliferation and [3H]-proline incorporation, with a hypertensive genotype + DPP4I + NPY1-36 + SDF-1α being the most efficacious combination. Although the effects of this four-way combination were similar in male versus female CFs, physiologic (1 nM) concentrations of 2-methoxyestradiol (2ME; nonestrogenic metabolite of 17β-estradiol), abolished the effects of this combination in both male and female CFs. In conclusion, this study demonstrates that CFs, PGVSMCs, and GMCs are differentially activated by various combinations of NPY1-36, PYY1-36, SDF-1α, a hypertensive genetic background and DPP4I. We hypothesize that as these progrowth conditions accumulate, a tipping point would be reached that manifests in the long term as organ fibrosis and that 2ME would obviate any profibrotic effects of DPP4I, even under the most profibrotic conditions (i.e., hypertensive genotype with high NPY1-36 + SDF-1α levels and low 2ME levels). SIGNIFICANCE STATEMENT: This work elucidates combinations of factors that could contribute to long-term profibrotic effects of dipeptidyl peptidase 4 inhibitors and suggests a novel drug combination that could prevent any potential profibrotic effects of dipeptidyl peptidase 4 inhibitors while augmenting the protective effects of this class of antidiabetic agents.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stevan P Tofovic
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Bhattacharya S, Kawamura A. Using evasins to target the chemokine network in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:1-38. [PMID: 31997766 DOI: 10.1016/bs.apcsb.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation, is driven by a network comprising cytokines, chemokines, their target receptors and leukocytes, and is a major pathologic mechanism that adversely affects organ function in diverse human diseases. Despite being supported by substantial target validation, no successful anti-chemokine therapeutic to treat inflammatory disease has yet been developed. This is in part because of the robustness of the chemokine network, which emerges from a large total chemokine load in disease, promiscuous expression of receptors on leukocytes, promiscuous and synergistic interactions between chemokines and receptors, and feedforward loops created by secretion of chemokines by leukocytes themselves. Many parasites, including viruses, helminths and ticks, evade the chemokine network by producing proteins that bind promiscuously to chemokines or their receptors. Evasins - three small glycoproteins identified in the saliva of the brown dog tick - bind multiple chemokines, and are active in several animal models of inflammatory disease. Over 50 evasin homologs have recently been identified from diverse tick species. Characterization of the chemokine binding patterns of evasins show that several have anti-chemokine activities that extend substantially beyond those previously described. These studies indicate that evasins function at the site of the tick bite by reducing total chemokine load. This not only reduces chemokine signaling to receptors, but also interrupts feedforward loops, thus disabling the chemokine network. Taking the lead from nature, a goal for the development of new anti-chemokine therapeutics would be to reduce the total chemokine load in disease. This could be achieved by administering appropriate evasin combinations or by smaller peptides that mimic evasin action.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Jackson EK, Mi E, Ritov VB, Gillespie DG. Extracellular Ubiquitin(1-76) and Ubiquitin(1-74) Regulate Cardiac Fibroblast Proliferation. Hypertension 2019; 72:909-917. [PMID: 30354710 DOI: 10.1161/hypertensionaha.118.11666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SDF-1α (stromal cell-derived factor-1α) is a CXCR4-receptor agonist and DPP4 (dipeptidyl peptidase 4) substrate. SDF-1α, particularly when combined with sitagliptin to block the metabolism of SDF-1α by DPP4, stimulates proliferation of cardiac fibroblasts via the CXCR4 receptor; this effect is greater in cells from spontaneously hypertensive rats versus Wistar-Kyoto normotensive rats. Emerging evidence indicates that ubiquitin(1-76) exists in plasma and is a potent CXCR4-receptor agonist. Therefore, we hypothesized that ubiquitin(1-76), similar to SDF-1α, should increase proliferation of cardiac fibroblasts. Contrary to our working hypothesis, ubiquitin(1-76) did not stimulate cardiac fibroblast proliferation, yet unexpectedly antagonized the proproliferative effects of SDF-1α combined with sitagliptin. In this regard, ubiquitin(1-76) was more potent in spontaneously hypertensive versus Wistar-Kyoto cells. In the presence of 6bk (selective inhibitor of insulin-degrading enzyme [IDE]; an enzyme known to convert ubiquitin(1-76) to ubiquitin(1-74)), ubiquitin(1-76) no longer antagonized the proproliferative effects of SDF-1α/sitagliptin. Ubiquitin(1-74) also antagonized the proproliferative effects of SDF-1α/sitagliptin, and this effect of ubiquitin(1-74) was not blocked by 6bk and was >10-fold more potent compared with ubiquitin(1-76). Neither ubiquitin(1-76) nor ubiquitin(1-74) inhibited the proproliferative effects of the non-CXCR4 receptor agonist neuropeptide Y (activates Y1 receptors). Cardiac fibroblasts expressed IDE mRNA, protein, and activity and converted ubiquitin(1-76) to ubiquitin(1-74). Spontaneously hypertensive fibroblasts expressed greater IDE activity. Extracellular ubiquitin(1-76) blocks the proproliferative effects of SDF-1α/sitagliptin via its conversion by IDE to ubiquitin(1-74), a potent CXCR4 antagonist. Thus, IDE inhibitors, particularly when combined with DPP4 inhibitors or hypertension, could increase the risk of cardiac fibrosis.
Collapse
Affiliation(s)
- Edwin K Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Eric Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Vladimir B Ritov
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Delbert G Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
6
|
Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 2018; 113:42. [PMID: 30191336 PMCID: PMC6133069 DOI: 10.1007/s00395-018-0700-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP−/− mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl4 (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Iα2 mRNA, Ki67+ fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)+ fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP−/− mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP−/− mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Iα2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.
Collapse
Affiliation(s)
- Andrey Kazakov
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany.
| | - Rabea A Hall
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christian Werner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Timo Meier
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - André Trouvain
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Svetlana Rodionycheva
- Klinik für Thorax- und Herz-Gefäßchirurgie, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 57, 66421, Homburg, Germany
| | - Alexander Nickel
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christoph Maack
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Jackson EK, Zhang Y, Gillespie DD, Zhu X, Cheng D, Jackson TC. SDF-1α (Stromal Cell-Derived Factor 1α) Induces Cardiac Fibroblasts, Renal Microvascular Smooth Muscle Cells, and Glomerular Mesangial Cells to Proliferate, Cause Hypertrophy, and Produce Collagen. J Am Heart Assoc 2017; 6:JAHA.117.007253. [PMID: 29114002 PMCID: PMC5721794 DOI: 10.1161/jaha.117.007253] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activated cardiac fibroblasts (CFs), preglomerular vascular smooth muscle cells (PGVSMCs), and glomerular mesangial cells (GMCs) proliferate, cause hypertrophy, and produce collagen; in this way, activated CFs contribute to cardiac fibrosis, and activated PGVSMCs and GMCs promote renal fibrosis. In heart and kidney diseases, SDF-1α (stromal cell-derived factor 1α; endogenous CXCR4 [C-X-C motif chemokine receptor 4] receptor agonist) levels are often elevated; therefore, it is important to know whether and how the SDF-1α/CXCR4 axis activates CFs, PGVSMCs, or GMCs. METHODS AND RESULTS Here we investigated whether SDF-1α activates CFs, PGVSMCs, and GMCs to proliferate, hypertrophy, or produce collagen. DPP4 (dipeptidyl peptidase 4) inactivates SDF-1α and previous experiments show that growth-promoting peptides have greater effects in cells from genetically-hypertensive animals. Therefore, we performed experiments in the absence and presence of sitagliptin (DPP4 inhibitor) and in cells from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats. Our studies show (1) that spontaneously hypertensive and Wistar-Kyoto rat CFs, PGVSMCs, and GMCs express CXCR4 receptors and DPP4 activity; (2) that chronic treatment with physiologically relevant concentrations of SDF-1α causes concentration-dependent increases in the proliferation (cell number) and hypertrophy (3H-leucine incorporation) of and collagen production (3H-proline incorporation) by CFs, PGVSMCs, and GMCs; (3) that sitagliptin augments these effects of SDF-1α; (4) that interactions between SDF-1α and sitagliptin are greater in spontaneously hypertensive rat cells; (5) that CXCR4 antagonism (AMD3100) blocks all effects of SDF-1α; and (6) that SDF-1α/CXCR4 signal transduction likely involves the RACK1 (receptor for activated C kinase 1)/Gβγ/PLC (phospholipase C)/PKC (protein kinase C) signaling complex. CONCLUSIONS The SDF-1α/CXCR4 axis drives proliferation and hypertrophy of and collagen production by CFs, PGVSMCs, and GMCs, particularly in cells from genetically hypertensive animals and when DPP4 is inhibited.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Yumeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Delbert D Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Travis C Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
8
|
Clinical Characteristics, Histopathological Features, and Clinical Outcome of Methamphetamine-Associated Cardiomyopathy. JACC-HEART FAILURE 2017; 5:435-445. [DOI: 10.1016/j.jchf.2017.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022]
|
9
|
Lurz JA, Luecke C, Lang D, Besler C, Rommel KP, Klingel K, Kandolf R, Adams V, Schöne K, Hindricks G, Schuler G, Linke A, Thiele H, Gutberlet M, Lurz P. CMR-Derived Extracellular Volume Fraction as a Marker for Myocardial Fibrosis: The Importance of Coexisting Myocardial Inflammation. JACC Cardiovasc Imaging 2017; 11:38-45. [PMID: 28412435 DOI: 10.1016/j.jcmg.2017.01.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/04/2017] [Accepted: 01/19/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVES The aim of the present study was to evaluate whether extracellular volume fraction (ECV) can reliably inform on the extent of diffuse fibrosis in the simultaneous presence of myocardial inflammation, which has not been verified to date. BACKGROUND Diffuse myocardial fibrosis is associated with unfavorable outcome in patients with cardiomyopathy, and is of prognostic relevance. Assessment of ECV bears promise for being a noninvasive surrogate parameter, but it may be altered by other pathologies. METHODS In this prospective study, 107 consecutive patients with clinical suspicion of inflammatory cardiomyopathy were included. All patients underwent left ventricular (LV) endomyocardial biopsy (EMB) and cardiac magnetic resonance imaging on a 1.5-T scanner. T1 mapping was obtained with the modified Look-Locker inversion recovery sequence, and ECV was calculated. RESULTS Myocardial inflammation was present in 66 patients. Patients with and without inflammation were of similar age and had comparable LV ejection fraction (37 ± 17% vs. 36 ± 18%; p = 0.9) and symptom duration (median 14 days [interquartile range: 5 to 36 days] vs. median 14 days [interquartile range: 7 to 30 days]; p = 0.73). Although LV collagen volume percentage was comparable between groups (inflammation 12.3 ± 17.8% vs. noninflammation 11.4 ± 7.9%; p = 0.577), ECV was significantly higher in patients with inflammation (0.37 ± 0.06%) than in those without inflammation (0.33 ± 0.08%; p = 0.02). Importantly, ECV adequately estimated the degree of LV fibrosis percentage only in patients without inflammation (r = 0.72; p < 0.0001) and not in those with inflammation (r = 0.24; p = 0.06). CONCLUSIONS These findings prove the theoretical concept of ECV as an estimate for diffuse myocardial fibrosis, but only in the absence of significant myocardial inflammation. Assuming that various degrees of myocardial inflammation and fibrosis coexist in such a scenario, the measured ECV will reflect a sum of these different pathologies but will not inform solely on the extent of diffuse fibrosis.
Collapse
Affiliation(s)
- Julia Anna Lurz
- Department of Electrophysiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Christian Luecke
- Department of Diagnostic and Interventional Radiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - David Lang
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Christian Besler
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Karl-Philipp Rommel
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Volker Adams
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Katharina Schöne
- Department of Electrophysiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Gerhard Schuler
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Axel Linke
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Holger Thiele
- University Heart Center Luebeck, University of Schleswig-Holstein, Medical Clinic II (Cardiology, Angiology, Intensive Care Medicine), Luebeck, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Philipp Lurz
- Department of Internal Medicine/Cardiology, University of Leipzig-Heart Center, Leipzig, Germany.
| |
Collapse
|
10
|
Ameling S, Bhardwaj G, Hammer E, Beug D, Steil L, Reinke Y, Weitmann K, Grube M, Trimpert C, Klingel K, Kandolf R, Hoffmann W, Nauck M, Dörr M, Empen K, Felix SB, Völker U. Changes of myocardial gene expression and protein composition in patients with dilated cardiomyopathy after immunoadsorption with subsequent immunoglobulin substitution. Basic Res Cardiol 2016; 111:53. [PMID: 27412778 PMCID: PMC7101709 DOI: 10.1007/s00395-016-0569-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Immunoadsorption with subsequent immunoglobulin substitution (IA/IgG) represents a therapeutic approach for patients with dilated cardiomyopathy (DCM). Here, we studied which molecular cardiac alterations are initiated after this treatment. Transcription profiling of endomyocardial biopsies with Affymetrix whole genome arrays was performed on 33 paired samples of DCM patients collected before and 6 months after IA/IgG. Therapy-related effects on myocardial protein levels were analysed by label-free proteome profiling for a subset of 23 DCM patients. Data were analysed regarding therapy-associated differences in gene expression and protein levels by comparing responders (defined by improvement of left ventricular ejection fraction ≥20 % relative and ≥5 % absolute) and non-responders. Responders to IA/IgG showed a decrease in serum N-terminal proBNP levels in comparison with baseline which was accompanied by a decreased expression of heart failure markers, such as angiotensin converting enzyme 2 or periostin. However, despite clinical improvement even in responders, IA/IgG did not trigger general inversion of DCM-associated molecular alterations in myocardial tissue. Transcriptome profiling revealed reduced gene expression for connective tissue growth factor, fibronectin, and collagen type I in responders. In contrast, in non-responders after IA/IgG, fibrosis-associated genes and proteins showed elevated levels, whereas values were reduced or maintained in responders. Thus, improvement of LV function after IA/IgG seems to be related to a reduced gene expression of heart failure markers and pro-fibrotic molecules as well as reduced fibrosis progression.
Collapse
Affiliation(s)
- Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Gourav Bhardwaj
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Daniel Beug
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17475, Greifswald, Germany
| | - Yvonne Reinke
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Kerstin Weitmann
- Institute for Community Medicine, University Medicine Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Markus Grube
- Department of Pharmacology, Centre of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Felix-Hausdorff-Str. 3, 17487, Greifswald, Germany
| | - Christiane Trimpert
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University Hospital Tübingen, Liebermeisterstr. 8, 72076, Tübingen, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Klaus Empen
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17475, Greifswald, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.
| |
Collapse
|
11
|
Radunski UK, Lund GK, Säring D, Bohnen S, Stehning C, Schnackenburg B, Avanesov M, Tahir E, Adam G, Blankenberg S, Muellerleile K. T1 and T2 mapping cardiovascular magnetic resonance imaging techniques reveal unapparent myocardial injury in patients with myocarditis. Clin Res Cardiol 2016; 106:10-17. [DOI: 10.1007/s00392-016-1018-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/30/2016] [Indexed: 12/20/2022]
|
12
|
Escher F, Kühl U, Lassner D, Poller W, Westermann D, Pieske B, Tschöpe C, Schultheiss HP. Long-term outcome of patients with virus-negative chronic myocarditis or inflammatory cardiomyopathy after immunosuppressive therapy. Clin Res Cardiol 2016; 105:1011-1020. [DOI: 10.1007/s00392-016-1011-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
|