1
|
Sharma R, Diwan B, Sharma A, Witkowski JM. Emerging cellular senescence-centric understanding of immunological aging and its potential modulation through dietary bioactive components. Biogerontology 2022; 23:699-729. [PMID: 36261747 PMCID: PMC9581456 DOI: 10.1007/s10522-022-09995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 12/13/2022]
Abstract
Immunological aging is strongly associated with the observable deleterious effects of human aging. Our understanding of the causes, effects, and therapeutics of aging immune cells has long been considered within the sole purview of immunosenescence. However, it is being progressively realized that immunosenescence may not be the only determinant of immunological aging. The cellular senescence-centric theory of aging proposes a more fundamental and specific role of immune cells in regulating senescent cell (SC) burden in aging tissues that has augmented the notion of senescence immunotherapy. Now, in addition, several emerging studies are suggesting that cellular senescence itself may be prevalent in aging immune cells, and that senescent immune cells exhibiting characteristic markers of cellular senescence, similar to non-leucocyte cells, could be among the key drivers of various facets of physiological aging. The present review integrates the current knowledge related to immunosenescence and cellular senescence in immune cells per se, and aims at providing a cohesive overview of these two phenomena and their significance in immunity and aging. We present evidence and rationalize that understanding the extent and impact of cellular senescence in immune cells vis-à-vis immunosenescence is necessary for truly comprehending the notion of an 'aged immune cell'. In addition, we also discuss the emerging significance of dietary factors such as phytochemicals, probiotic bacteria, fatty acids, and micronutrients as possible modulators of immunosenescence and cellular senescence. Evidence and opportunities related to nutritional bioactive components and immunological aging have been deliberated to augment potential nutrition-oriented immunotherapy during aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| | - Bhawna Diwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, 500037, India
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland.
| |
Collapse
|
3
|
Degradation Products of Complex Arabinoxylans by Bacteroides intestinalis Enhance the Host Immune Response. Microorganisms 2021; 9:microorganisms9061126. [PMID: 34067445 PMCID: PMC8224763 DOI: 10.3390/microorganisms9061126] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Bacteroides spp. of the human colonic microbiome degrade complex arabinoxylans from dietary fiber and release ferulic acid. Several studies have demonstrated the beneficial effects of ferulic acid. Here, we hypothesized that ferulic acid or the ferulic acid-rich culture supernatant of Bacteroides intestinalis, cultured in the presence of complex arabinoxylans, enhances the immune response. Ferulic acid and the culture supernatant of bacteria cultured in the presence of insoluble arabinoxylans significantly decreased the expression of tumor necrosis factor-α and increased the expression of interleukin-10 and transforming growth factor β1 from activated dendritic cells compared to controls. The number of granulocytes in mesenteric lymph nodes, the number of spleen monocytes/granulocytes, and interleukin-2 and interleukin-12 plasma levels were significantly increased in mice treated with ferulic acid or the culture supernatant of bacteria cultured with insoluble arabinoxylans. Ferulic acid or the culture supernatant of bacteria cultured with insoluble arabinoxylans increased the expression of interleukin-12, interferon-α, and interferon-β in intestinal epithelial cell lines. This study shows that ferulic acid or the ferulic acid-rich culture supernatant of the colonic bacterium Bacteroides intestinalis, cultured with insoluble arabinoxylans, exerts anti-inflammatory activity in dendritic cells under inflammatory conditions and enhances the Th1-type immune response under physiological conditions in mice.
Collapse
|
4
|
Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct 2021; 11:2805-2825. [PMID: 32134090 DOI: 10.1039/d0fo00216j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent times, a great number of plants have been studied in order to identify new components with nutraceutical properties, among which are polyphenols. Dietary polyphenols represent a large group of bioactive molecules widely found in the food of plant origin and they have been found able to prevent the onset and progression of degenerative diseases, and to reduce and control their symptoms. These health protective effects have been mainly related to their antioxidant and anti-inflammatory properties. However, it must be considered that the application of isolated polyphenols as nutraceuticals is quite limited due to their poor systemic distribution and relative bioavailability. The present review highlights the potential effect of dietary intervention with polyphenol-rich food and plant extracts in patients with cancer, diabetes and neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the possible molecular mechanisms of action suggested in numerous studies with animal models.
Collapse
Affiliation(s)
- Javier Quero
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Inés Mármol
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, 50013, Zaragoza, CIBERobn (Carlos III), IIS Aragón, IA2, Spain.
| |
Collapse
|
5
|
Song YC, Huang HC, Chang CYY, Lee HJ, Liu CT, Lo HY, Ho TY, Lin WC, Yen HR. A Potential Herbal Adjuvant Combined With a Peptide-Based Vaccine Acts Against HPV-Related Tumors Through Enhancing Effector and Memory T-Cell Immune Responses. Front Immunol 2020; 11:62. [PMID: 32153559 PMCID: PMC7044417 DOI: 10.3389/fimmu.2020.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Viral infection is associated with many types of tumorigenesis, including human papillomavirus (HPV)-induced cervical cancer. The induction of a specific T-cell response against virus-infected cells is desired to develop an efficient therapeutic approach for virus-associated cancer. Chinese herbal medicine (CHM) has a long history in the treatment of cancer patients in Asian countries. Hedyotis diffusa Willd (Bai Hua She She Cao, BHSSC) is frequently used clinically and has been shown to inhibit tumor growth in vitro. However, in vivo data demonstrating the antitumor efficacy of BHSSC are still lacking. We showed that BHSSC induces murine and human antigen-presenting cell (APC) activation via the MAPK signaling pathway and enhances antigen presentation in bone marrow-derived dendritic cells (BMDCs) in vitro. Furthermore, we identified that treatment with BHSSC leads to improved specific effector and memory T-cell responses in vivo. Variant peptide-based vaccines combined with BHSSC improved antitumor activity in preventive, therapeutic, and recurrent HPV-related tumor models. Furthermore, we showed that rutin, one of the ingredients in BHSSC, induces a strong specific immune response against HPV-related tumors in vivo. In summary, we demonstrated that BHSSC extract and its active compound, rutin, can be used as adjuvants in peptide-based vaccines to increase immunogenicity and to bypass the requirement of a conditional adjuvant.
Collapse
Affiliation(s)
- Ying-Chyi Song
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Chi Huang
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lee
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chuan-Teng Liu
- Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsin-Yi Lo
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tin-Yun Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wu-Chou Lin
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hung-Rong Yen
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Research Center of Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
6
|
Nowak PJ, Zasowska-Nowak A, Bialasiewicz P, de Graft-Johnson J, Nowak D, Nowicki M. Inhibitory effect of plant phenolics on fMLP-induced intracellular calcium rise and chemiluminescence of human polymorphonuclear leukocytes and their chemotactic activity in vitro. PHARMACEUTICAL BIOLOGY 2015; 53:1661-1670. [PMID: 25856712 DOI: 10.3109/13880209.2014.1001403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Polymorphonuclear leukocytes (PMNs) produce oxidants, contributing to systemic oxidative stress. Diets rich in plant polyphenols seem to decrease the risk of oxidative stress-induced disorders including cardiovascular disease. OBJECTIVE The objective of this study was to examine the in vitro effect of each of the 14 polyphenols on PMNs chemotaxis, intracellular calcium response, oxidants production. MATERIALS AND METHODS Blood samples and PMNs suspensions were obtained from 60 healthy non-smoking donors and incubated with a selected polyphenol (0.5-10 µM) or a control solvent. We assessed resting and fMLP-dependent changes of intracellular calcium concentration ([Ca(2+)]i) in PMNs with the Fura-2AM method and measured fMLP-induced luminol enhanced whole blood chemiluminescence (fMLP-LBCL). Polyphenol chemoattractant activity for PMNs was tested with Boyden chambers. RESULTS Polyphenols had no effect on resting [Ca(2+)]i. Unaffected by other compounds, fMLP-dependent increase of [Ca(2+)]i was inhibited by quercetin and catechol (5 µM) by 32 ± 14 and 12 ± 10% (p < 0.04), respectively. Seven of the 14 tested substances (5 µM) influenced fMLP-LBCL by decreasing it. Catechol, quercetin, and gallic acid acted most potently reducing fMLP-LBCL by 49 ± 5, 42 ± 15, and 28 ± 18% (p < 0.05), respectively. 3,4-Dihydroxyhydrocinnamic, 3,4-dihydroxyphenylacetic, 4-hydroxybenzoic acid, and catechin (5 µM) revealed distinct (p < 0.02) chemoattractant activity with a chemotactic index of 1.9 ± 0.8, 1.8 ± 0.7, 1.6 ± 0.6, 1.4 ± 0.2, respectively. CONCLUSION AND DISCUSSION Catechol, quercetin, and gallic acid at concentrations commensurate in human plasma strongly suppressed the oxidative response of PMNs. Regarding quercetin and catechol, this could result from an inhibition of [Ca(2+)]i response.
Collapse
Affiliation(s)
- Piotr Jan Nowak
- Department of Nephrology, Hypertension, and Kidney Transplantation, Medical University of Lodz , Lodz , Poland
| | | | | | | | | | | |
Collapse
|