1
|
Dobani S, Kirsty Pourshahidi L, Ternan NG, McDougall GJ, Pereira-Caro G, Bresciani L, Mena P, Almutairi TM, Crozier A, Tuohy KM, Del Rio D, Gill CIR. A review on the effects of flavan-3-ols, their metabolites, and their dietary sources on gut barrier integrity. Food Funct 2025; 16:815-830. [PMID: 39807528 DOI: 10.1039/d4fo04721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demonstrates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed, including transepithelial electrical resistance of the epithelial layer and expression of tight junction proteins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier integrity are structure-function dependent, related to the (poly)phenolic source or the tested compound, as well as their dose, exposure time, and presence or absence of a stressor in the experimental system. Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect, and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associated with the intake of their dietary sources. However, rigorous and robustly designed human intervention studies are needed to confirm these experimental observations.
Collapse
Affiliation(s)
- Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Nigel G Ternan
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| | - Gordon J McDougall
- Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, IFAPA-Alameda Del Obispo, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Alan Crozier
- Department of Chemistry, King Saud University Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | - Kieran M Tuohy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
- Microbiome Research Hub, Department of Food and Drug, University of Parma, Parma, Italy
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
| |
Collapse
|
2
|
Tie S, Xue M, Chen Y, Wu Y, Gu S, Tan M. Enhancing stability, bioavailability and nutritional intervention effect of procyanidins using bio-based delivery systems: A review. Int J Biol Macromol 2025; 287:138517. [PMID: 39647725 DOI: 10.1016/j.ijbiomac.2024.138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Procyanidins (PCs), a kind of polyphenolic compound, have attracted extensive attention due to their strong antioxidant, anti-inflammatory and other activities. However, PCs are susceptible to complex micro-environments, resulting in low stability, poor target tissue delivery and bioavailability, which limits their biological effects. Therefore, it is urgent to find some suitable pathways to protect PCs, avoid their degradation, and maximize their health benefits in nutritional intervention. This review focused on the design and construction of different types of bio-based delivery systems loaded with PCs, such as nanoparticles, microparticles, emulsions, liposomes, hydrogels and fibers. The advantages and biological effects of PCs-based delivery systems in promoting cellular uptake, realizing targeted release of organs, cells and organelles, and even nutritional intervention for different chronic diseases were summarized. Furthermore, the development prospects and challenges of delivery systems in the field of precision nutrition were discussed. The construction of these delivery systems can effectively improve the stability and bioavailability of PCs, and maximize their precise nutritional intervention for various chronic diseases.
Collapse
Affiliation(s)
- Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
| | - Mengmeng Xue
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yannan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Taian 270018, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
4
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
5
|
Health benefits of proanthocyanidins linking with gastrointestinal modulation: An updated review. Food Chem 2023; 404:134596. [DOI: 10.1016/j.foodchem.2022.134596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
6
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
7
|
Taladrid D, Zorraquín‐Peña I, Molinero N, Silva M, Manceñido N, Pajares R, Bartolomé B, Moreno‐Arribas MV. Polyphenols and Ulcerative Colitis: An Exploratory Study of the Effects of Red Wine Consumption on Gut and Oral Microbiome in Active-Phase Patients. Mol Nutr Food Res 2022; 66:e2101073. [PMID: 35633101 PMCID: PMC9787944 DOI: 10.1002/mnfr.202101073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/09/2022] [Indexed: 12/30/2022]
Abstract
SCOPE This paper explores the effects of moderate red wine consumption on the clinical status and symptomatology of patients with ulcerative colitis (UC), including the study of the oral and intestinal microbiome. METHODS AND RESULTS A case control intervention study in UC patients is designed. Intervention patients (n = 5) consume red wine (250 mL day-1 ) for 4 weeks whereas control patients (n = 5) do not. Moderate wine consumption significantly (p < 0.05) improves some clinical parameters related to serum iron, and alleviates intestinal symptoms as evaluated by the IBDQ-32 questionnaire. 16S rRNA gene sequencing indicate a non-significant (p > 0.05) increase in bacterial alpha diversity after wine intervention in both saliva and fecal microbiota. Additional comparison of taxonomic data between UC patients (n = 10) and healthy subjects (n = 8) confirm intestinal dysbiosis for the UC patients. Finally, analysis of fecal metabolites (i.e., phenolic acids and SCFAs) indicates a non-significant increase (p > 0.05) for the UC patients that consumed wine. CONCLUSIONS Moderate and regular red wine intake seems to improve the clinical status and symptoms of UC patients in the active phase of the disease. However, studies with a greater sample size are required to achieve conclusive results.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Irene Zorraquín‐Peña
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Natalia Molinero
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Mariana Silva
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | - Noemi Manceñido
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Ramón Pajares
- Hospital Universitario “Infanta Sofia”, P.° de Europa34, 28703 San Sebastián de los ReyesMadridSpain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL)CSIC‐UAM, c/Nicolás Cabrera 9Madrid28049Spain
| | | |
Collapse
|
8
|
Ferreira YAM, Jamar G, Estadella D, Pisani LP. Proanthocyanidins in grape seeds and their role in gut microbiota-white adipose tissue axis. Food Chem 2022; 404:134405. [DOI: 10.1016/j.foodchem.2022.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
|
9
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
10
|
Intestinal Morphometric Changes Induced by a Western-Style Diet in Wistar Rats and GSPE Counter-Regulatory Effect. Nutrients 2022; 14:nu14132608. [PMID: 35807788 PMCID: PMC9268310 DOI: 10.3390/nu14132608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Western-style diet is an obesogenic diet for rodents and humans due to its content of saturated fat and refined sugars, mainly sucrose and, in consequence, sucrose-derived fructose. This type of diets relates with intestinal disturbances when consumed regularly. The aim of this work was to analyse the adaptive morphologic and functional changes at intestinal level derived from the unhealthy components of a Cafeteria diet in rats. The effect of grape seed proanthocyanidin extract (GSPE) in the prevention of diet-induced intestinal dysfunction was also analysed. Rats were fed a 17-week cafeteria diet (CAF) without or with oral-GSPE supplementation, either intermittent GSPE administration (SIT-CAF); last 10-day GSPE supplementation at doses of 100 mg/kg and 500 mg/kg day (CORR-100) and (CORR-500) or pre-supplementation with 500 mg/kg GSPE (PRE-CAF). GSPE-CAF supplemented groups showed similar results to CAF diet group regarding morphology and inflammatory score in the duodenum. As an adaptive response to diet, CAF increased intestinal absorptive surface (1.24-fold) all along the intestinal tract and specifically in the small intestine, duodenum, due to increase villus height and a higher villus/crypt ratio, in addition to increase in Goblet cell percentage and inflammatory index. Animals fed GSPE at the current doses and times had higher villus heights and absorptive surface similar to Cafeteria diet group. In the duodenum, villus height correlated with body weight at 17 week and negatively with MLCK gene expression. In the colon, villus height correlated with the percentage of goblet cells. In conclusion, the CAF diet produced adaptive modifications of the intestine by increasing the absorptive area of the small intestine, the percentage of goblet cells and the inflammatory index at the duodenal level. GSPE supplementation can partially reverse the intestinal morphological changes induced by the high fat/sucrose diet when administered intermittently.
Collapse
|
11
|
Lin KN, Zhao W, Huang SY, Li H. Grape seed proanthocyanidin extract induces apoptosis of HL-60/ADR cells via the Bax/Bcl-2 caspase-3/9 signaling pathway. Transl Cancer Res 2022; 10:3939-3947. [PMID: 35116693 PMCID: PMC8797540 DOI: 10.21037/tcr-21-920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Background Our previous study detailed the direct induction of apoptosis by grape seed proanthocyanidin extract (GSPE) in a multidrug resistant human acute myeloid leukemia (AML) HL-60/adriamycin (HL-60/ADR) cell line, although the mechanism of this effect was not detailed. This study aims to elucidate the mechanism underlying GSPE-induced cell apoptosis in HL-60/ADR cells. Methods HL-60/ADR cells were studied to evaluate effects of GSPE (0–100 µg/mL); a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to identify the cytotoxic effect of varying GSPE concentrations. Trypan blue staining was used to observe changes in cell viability; flow cytometry assays were used to verify apoptosis. Expression of Bax and Bcl-2 mRNA was analyzed using real-time polymerase chain reaction (PCR). Activity of caspase-3 and caspase-9 was also detected. Results Here, GSPE was found to inhibit HL-60/ADR cell growth and induce cell apoptosis in a dose-dependent manner. Real-time PCR findings revealed that GSPE concentrations above 75 µg/mL significantly increase expression of Bax mRNA (P<0.001). GSPE concentrations above 25 µg/mL were found to significantly decrease expression of Bcl-2 mRNA (P<0.01), while concentrations above 50 µg/mL were found to significantly increase caspase-3 activity after 6, 12 and 24 h (P<0.01). However, only 100 µg/mL GSPE was found to significantly increase caspase-9 activity (P<0.001 at 6 and 12 h; P<0.05 at 24 h). Conclusions GSPE inhibits the proliferation of HL-60/ADR cells by the induction of apoptosis in a dose-dependent manner via the Bax/Bcl-2 caspase-3/9 signaling pathway.
Collapse
Affiliation(s)
- Ka-Na Lin
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhao
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Ying Huang
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Li
- Department of Pharmacy, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
13
|
Gliadin Sequestration as a Novel Therapy for Celiac Disease: A Prospective Application for Polyphenols. Int J Mol Sci 2021; 22:ijms22020595. [PMID: 33435615 PMCID: PMC7826989 DOI: 10.3390/ijms22020595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Celiac disease is an autoimmune disorder characterized by a heightened immune response to gluten proteins in the diet, leading to gastrointestinal symptoms and mucosal damage localized to the small intestine. Despite its prevalence, the only treatment currently available for celiac disease is complete avoidance of gluten proteins in the diet. Ongoing clinical trials have focused on targeting the immune response or gluten proteins through methods such as immunosuppression, enhanced protein degradation and protein sequestration. Recent studies suggest that polyphenols may elicit protective effects within the celiac disease milieu by disrupting the enzymatic hydrolysis of gluten proteins, sequestering gluten proteins from recognition by critical receptors in pathogenesis and exerting anti-inflammatory effects on the system as a whole. This review highlights mechanisms by which polyphenols can protect against celiac disease, takes a critical look at recent works and outlines future applications for this potential treatment method.
Collapse
|
14
|
Ruan Y, Jin Q, Zeng J, Ren F, Xie Z, Ji K, Wu L, Wu J, Li L. Grape Seed Proanthocyanidin Extract Ameliorates Cardiac Remodelling After Myocardial Infarction Through PI3K/AKT Pathway in Mice. Front Pharmacol 2020; 11:585984. [PMID: 33343353 PMCID: PMC7747856 DOI: 10.3389/fphar.2020.585984] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Myocardial infarction is one of the most serious fatal diseases in the world, which is due to acute occlusion of coronary arteries. Grape seed proanthocyanidin extract (GSPE) is an active compound extracted from grape seeds that has anti-oxidative, anti-inflammatory and anti-tumor pharmacological effects. Natural products are cheap, easy to obtain, widely used and effective. It has been used to treat numerous diseases, such as cancer, brain injury and diabetes complications. However, there are limited studies on its role and associated mechanisms in myocardial infarction in mice. This study showed that GSPE treatment in mice significantly reduced cardiac dysfunction and improved the pathological changes due to MI injury. In vitro, GSPE inhibited the apoptosis of H9C2 cells after hypoxia culture, resulting in the expression of Bax decreased and the expression of Bcl-2 increased. The high expression of p-PI3K and p-AKT was detected in MI model in vivo and in vitro. The use of the specific PI3K/AKT pathway inhibitor LY294002 regressed the cardio-protection of GSPE. Our results showed that GSPE could improve the cardiac dysfunction and remodeling induced by MI and inhibit cardiomyocytes apoptosis in hypoxic conditions through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Yongxue Ruan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qike Jin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Zeng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangfang Ren
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuoyi Xie
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kangting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lianpin Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingguo Wu
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Li
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Gastrointestinally Digested Protein from the Insect Alphitobius diaperinus Stimulates a Different Intestinal Secretome than Beef or Almond, Producing a Differential Response in Food Intake in Rats. Nutrients 2020; 12:nu12082366. [PMID: 32784756 PMCID: PMC7468914 DOI: 10.3390/nu12082366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
In this study we compare the interaction of three protein sources—insect, beef, and almond—with the gastrointestinal tract. We measured the enterohormone secretion ex vivo in human and pig intestine treated with in vitro digestions of these foods. Insect and beef were the most effective in inducing the secretion of CCK, while almond was the most effective in inducing PYY in pig duodenum. In the human colon, almond was also the most effective in inducing PYY, and GLP-1 levels were increased by insect and beef. The three digested proteins reduced ghrelin secretion in pig duodenum, while only insect reduced ghrelin secretion in human colon. We also found that food intake in rats increased in groups fed a raw insect pre-load and decreased when fed raw almond. In conclusion, the insect Alphitobius diaperinus modulates duodenal and colonic enterohormone release and increases food intake in rats. These effects differ from beef and almond.
Collapse
|
16
|
Grau-Bové C, González-Quilen C, Terra X, Blay MT, Beltrán-Debón R, Jorba-Martín R, Espina B, Pinent M, Ardévol A. Effects of Flavanols on Enteroendocrine Secretion. Biomolecules 2020; 10:biom10060844. [PMID: 32492958 PMCID: PMC7355421 DOI: 10.3390/biom10060844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Some beneficial effects of grape seed proanthocyanidin extract (GSPE) can be explained by the modulation of enterohormone secretion. As GSPE comprises a combination of different molecules, the pure compounds that cause these effects need to be elucidated. The enterohormones and chemoreceptors present in the gastrointestinal tract differ between species, so if humans are to gain beneficial effects, species closer to humans-and humans themselves-must be used. We demonstrate that 100 mg/L of GSPE stimulates peptide YY (PYY) release, but not glucagon-like peptide 1 (GLP-1) release in the human colon. We used a pig ex vivo system that differentiates between apical and basolateral intestinal sides to analyse how apical stimulation with GSPE and its pure compounds affects the gastrointestinal tract. In pigs, apical GSPE treatment stimulates the basolateral release of PYY in the duodenum and colon and that of GLP-1 in the ascending, but not the descending colon. In the duodenum, luminal stimulation with procyanidin dimer B2 increased PYY secretion, but not CCK secretion, while catechin monomers (catechin/epicatechin) significantly increased CCK release, but not PYY release. The differential effects of GSPE and its pure compounds on enterohormone release at the same intestinal segment suggest that they act through chemosensors located apically and unevenly distributed along the gastrointestinal tract.
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - M. Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Raul Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Rosa Jorba-Martín
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Beatriz Espina
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Correspondence: ; Tel.: +34-97-755-9566
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| |
Collapse
|