1
|
Spagnol G, Trease A, Zheng L, Sobota S, Schmidt M, Cheku S, Sorgen PL. Cx45 regulation by kinases and impact of expression in heart failure. J Mol Cell Cardiol 2025; 203:91-105. [PMID: 40280467 DOI: 10.1016/j.yjmcc.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Phosphorylation plays a crucial role in connexin regulation by modulating gap junction intercellular communication (GJIC), localization, stability, and interactions with signaling proteins. Few kinases are known to phosphorylate Cx45, and their target residues remain unknown. A phosphorylation screen identified several Cx45-targeting kinases activated in heart disease, among which c-Src was found by mass spectroscopy to phosphorylate residues Y324 and Y356. Unlike Cx43, c-Src phosphorylation of Cx45 did not impair GJIC, alter junctional localization, or affect interactions with cytoskeletal proteins β-tubulin, Drebrin, and ZO-1. In LA-25 cells where Cx43 is internalized after temperature sensitive activation of v-Src, expression of Cx45 unexpectedly maintained Cx43 at the plasma membrane. Phospho-specific antibodies helped identify that while Cx43 had a tyrosine phosphorylation pattern favoring turnover, the serine phosphorylation pattern was conducive for GJIC. Furthermore, in a rat model of heart failure, Cx45 was expressed in the ventricle and co-localized with Cx43, leading to altered dye coupling indicative of a shift toward Cx45-like channel permeability. Altogether, our data suggests that in heart failure, c-Src activation on its own would not have an adverse effect on Cx45 function and that aberrant Cx45 expression helps Cx43 transport to and maintain at the intercalated disc. Yet the dominant effect of Cx45 in heteromeric channels could ultimately make Cx45 a key driver of cardiac dysfunction. Finally, the observation that Cx45-mediated coupling remains functional even in the same pathological environment where Cx43-mediated communication is inhibited suggests that kinase regulation of connexins is isoform-specific and not universally predictable.
Collapse
Affiliation(s)
- Gaelle Spagnol
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew Trease
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Li Zheng
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Stephen Sobota
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Marissa Schmidt
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sunayn Cheku
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul L Sorgen
- From the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2025; 41:899-910. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Charlotte M S De Henau
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Zhu Y, Su SA, Shen J, Ma H, Le J, Xie Y, Xiang M. Recent advances of the Ephrin and Eph family in cardiovascular development and pathologies. iScience 2024; 27:110556. [PMID: 39188984 PMCID: PMC11345580 DOI: 10.1016/j.isci.2024.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptors, comprising the largest family of receptor tyrosine kinases (RTKs), exert profound influence on diverse biological processes and pathological conditions such as cancer. Interacting with their corresponding ligands, erythropoietin-producing hepatoma receptor interacting proteins (Ephrins), Eph receptors regulate crucial events like embryonic development, tissue boundary formation, and tumor cell survival. In addition to their well-established roles in embryonic development and cancers, emerging evidence highlights the pivotal contribution of the Ephrin/Eph family to cardiovascular physiology and pathology. Studies have elucidated their involvement in cardiovascular development, atherosclerosis, postnatal angiogenesis, and, more recently, cardiac fibrosis and calcification, suggesting a promising avenue for therapeutic interventions in cardiovascular diseases. There remains a need for a comprehensive synthesis of their collective impact in the cardiovascular context. By exploring the intricate interactions between Eph receptors, ephrins, and cardiovascular system, this review aims to provide a holistic understanding of their roles and therapeutic potential in cardiovascular health and diseases.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Sheng-an Su
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jian Shen
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Hong Ma
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Jixie Le
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Yao Xie
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| | - Meixiang Xiang
- Department of Cardiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
| |
Collapse
|
4
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
5
|
Skelin Klemen M, Dolenšek J, Križančić Bombek L, Pohorec V, Gosak M, Slak Rupnik M, Stožer A. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks. Front Endocrinol (Lausanne) 2023; 14:1225486. [PMID: 37701894 PMCID: PMC10494243 DOI: 10.3389/fendo.2023.1225486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
7
|
Cheng C, Gao J, Sun X, Mathias RT. Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance. Front Physiol 2021; 12:772276. [PMID: 34899394 PMCID: PMC8656704 DOI: 10.3389/fphys.2021.772276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
The avascular eye lens generates its own microcirculation that is required for maintaining lifelong lens transparency. The microcirculation relies on sodium ion flux, an extensive network of gap junction (GJ) plaques between lens fiber cells and transmembrane water channels. Disruption of connexin proteins, the building blocks of GJs, or aquaporins, which make up water and adhesion channels, lead to lens opacification or cataracts. Recent studies have revealed that disruption of Eph-ephrin signaling, in particular the receptor EphA2 and the ligand ephrin-A5, in humans and mice lead to congenital and age-related cataracts. We investigated whether changes in lens transparency in EphA2 or ephrin-A5 knockout (–/–) mice is related to changes in GJ coupling and lens fluid and ion homeostasis. Immunostaining revealed changes in connexin 50 (Cx50) subcellular localization in EphA2–/– peripheral lens fibers and alteration in aquaporin 0 (Aqp0) staining patterns in ephrin-A5–/– and EphA2–/– inner mature fiber cells. Surprisingly, there was no obvious change in GJ coupling in knockout lenses. However, there were changes in fiber cell membrane conductance and intracellular voltage in knockout lenses from 3-month-old mice. These knockout lenses displayed decreased conductance of mature fiber membranes and were hyperpolarized compared to control lenses. This is the first demonstration that the membrane conductance of lens fibers can be regulated. Together these data suggest that EphA2 may be needed for normal Cx50 localization to the cell membrane and that conductance of lens fiber cells requires normal Eph-ephrin signaling and water channel localization.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Junyuan Gao
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Xiurong Sun
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Richard T Mathias
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
8
|
Lyons O, Walker J, Seet C, Ikram M, Kuchta A, Arnold A, Hernández-Vásquez M, Frye M, Vizcay-Barrena G, Fleck RA, Patel AS, Padayachee S, Mortimer P, Jeffery S, Berland S, Mansour S, Ostergaard P, Makinen T, Modarai B, Saha P, Smith A. Mutations in EPHB4 cause human venous valve aplasia. JCI Insight 2021; 6:e140952. [PMID: 34403370 PMCID: PMC8492339 DOI: 10.1172/jci.insight.140952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
Collapse
Affiliation(s)
- Oliver Lyons
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - James Walker
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Christopher Seet
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Mohammed Ikram
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Adam Kuchta
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Andrew Arnold
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Magda Hernández-Vásquez
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Maike Frye
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Ashish S. Patel
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Soundrie Padayachee
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Peter Mortimer
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Steve Jeffery
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
- South West Thames Regional Genetics Service, St. George’s Hospital, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Taija Makinen
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Alberto Smith
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
9
|
Wang H, Lin X, Li J, Zeng G, Xu T. Long Noncoding RNA SOX2-OT Aggravates Doxorubicin-Induced Apoptosis of Cardiomyocyte by Targeting miR-942-5p/DP5. Drug Des Devel Ther 2021; 15:481-492. [PMID: 33603338 PMCID: PMC7886105 DOI: 10.2147/dddt.s267474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) play important roles in doxorubicin (DOX)-induced apoptosis of cardiomyocytes. However, the function of lncRNA SOX2-OT is unclear. This study was carried out to investigate the function of SOX2-OT in doxorubicin-induced cardiomyocyte apoptosis. METHODS qRT-PCR and immunoblotting were used to detect the expression levels of SOX2-OT, miR-942-5p and death protein-5 (DP5) in DOX-treated primary cardiomyocytes and rat models. The relationship among miR-942-5p, SOX2-OT, and DP5 was explored by luciferase reporter assay. The effects of SOX2-OT, miR-942-5p and DP5 on doxorubicin-induced cardiomyocyte apoptosis were evaluated by Annexin V-FITC/PI method and caspase-3 activity assay. The effect of SOX2-OT on cardiomyocyte apoptosis was analyzed by TUNEL staining and echocardiography. RESULTS SOX2-OT and DP5 were highly expressed, while miR-942-5p was down-regulated in DOX-treated primary cardiomyocytes and rat model. SOX2-OT can upregulate DP5 as a sponge of miR-942-5p, which was a direct target of miR-942-5p. In addition, miR-942-5p reversed the protective effect of knockdown of SOX2-OT on cardiomyocytes by inhibiting the expression of DP5 in vitro and in vivo. CONCLUSION Knockdown of SOX2-OT down-regulated DP5 via sponging miR-942-5p and inhibiting DOX-induced apoptosis of primary cardiomyocytes.
Collapse
Affiliation(s)
- Haining Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Xiule Lin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Jilin Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515000, People’s Republic of China
| | - Guoning Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| | - Tan Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Shantou University Medical College, Cardiac Care Unit (CCU), Shantou, Guangdong Province, 515041, People’s Republic of China
| |
Collapse
|
10
|
Su SA, Xie Y, Zhang Y, Xi Y, Cheng J, Xiang M. Essential roles of EphrinB2 in mammalian heart: from development to diseases. Cell Commun Signal 2019; 17:29. [PMID: 30909943 PMCID: PMC6434800 DOI: 10.1186/s12964-019-0337-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
EphrinB2, a membrane-tethered ligand preferentially binding to its receptor EphB4, is ubiquitously expressed in all mammals. Through the particular bidirectional signaling, EphrinB2 plays a critical role during the development of cardiovascular system, postnatal angiogenesis physiologically and pathologically, and cardiac remodeling after injuries as an emerging role. This review highlights the pivotal involvement of EphrinB2 in heart, from developmental cardiogenesis to pathological cardiac remodeling process. Further potential translational therapies will be discussed in targeting EphrinB2 signaling, to better understand the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Sheng-An Su
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuhao Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yutao Xi
- Texas Heart Institute, Houston, 77030, USA.
| | - Jie Cheng
- Texas Heart Institute, Houston, 77030, USA
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Trease AJ, Li H, Spagnol G, Zheng L, Stauch KL, Sorgen PL. Regulation of Connexin32 by ephrin receptors and T-cell protein-tyrosine phosphatase. J Biol Chem 2019; 294:341-350. [PMID: 30401746 PMCID: PMC6322898 DOI: 10.1074/jbc.ra118.003883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/25/2018] [Indexed: 11/06/2022] Open
Abstract
Gap junctions are intercellular conduits that permit the passage of ions, small metabolites, and signaling molecules between cells. Connexin32 (Cx32) is a major gap junction protein in the liver and brain. Phosphorylation is integral to regulating connexin assembly, degradation, and electrical and metabolic coupling, as well as to interactions with molecular partners. Cx32 contains two intracellular tyrosine residues, and tyrosine phosphorylation of Cx32 has been detected after activation of the epidermal growth factor receptor; however, the specific tyrosine residue and the functional implication of this phosphorylation remain unknown. To address the limited available information on Cx32 regulation by tyrosine kinases, here we used the Cx32 C-terminal (CT) domain in an in vitro kinase-screening assay, which identified ephrin (Eph) receptor family members as tyrosine kinases that phosphorylate Cx32. We found that EphB1 and EphA1 phosphorylate the Cx32CT domain residue Tyr243 Unlike for Cx43, the tyrosine phosphorylation of the Cx32CT increased gap junction intercellular communication. We also demonstrated that T-cell protein-tyrosine phosphatase dephosphorylates pTyr243 The data presented above along with additional examples throughout the literature of gap junction regulation by kinases, indicate that one cannot extrapolate the effect of a kinase on one connexin to another.
Collapse
Affiliation(s)
| | - Hanjun Li
- Department of Biochemistry and Molecular Biology; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Li Zheng
- Department of Biochemistry and Molecular Biology
| | | | | |
Collapse
|
12
|
Gofur MR, Ogawa K. Compartments with predominant ephrin‐B1 and EphB2/B4 expression are present alternately along the excurrent duct system in the adult mouse testis and epididymis. Andrology 2018; 7:888-901. [DOI: 10.1111/andr.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/23/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- M. R. Gofur
- Laboratory of Veterinary Anatomy Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| | - K. Ogawa
- Laboratory of Veterinary Anatomy Graduate School of Life and Environmental Sciences Osaka Prefecture University Izumisano Japan
| |
Collapse
|
13
|
Rainer J, Meraviglia V, Blankenburg H, Piubelli C, Pramstaller PP, Paolin A, Cogliati E, Pompilio G, Sommariva E, Domingues FS, Rossini A. The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics 2018; 19:491. [PMID: 29940860 PMCID: PMC6019788 DOI: 10.1186/s12864-018-4876-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/18/2018] [Indexed: 01/05/2023] Open
Abstract
Background Arrhythmogenic cardiomyopathy (ACM) is a genetic autosomal disease characterized by abnormal cell-cell adhesion, cardiomyocyte death, progressive fibro-adipose replacement of the myocardium, arrhythmias and sudden death. Several different cell types contribute to the pathogenesis of ACM, including, as recently described, cardiac stromal cells (CStCs). In the present study, we aim to identify ACM-specific expression profiles of human CStCs derived from endomyocardial biopsies of ACM patients and healthy individuals employing TaqMan Low Density Arrays for miRNA expression profiling, and high throughput sequencing for gene expression quantification. Results We identified 3 miRNAs and 272 genes as significantly differentially expressed at a 5% false discovery rate. Both the differentially expressed genes as well as the target genes of the ACM-specific miRNAs were found to be enriched in cell adhesion-related biological processes. Functional similarity and protein interaction-based network analyses performed on the identified deregulated genes, miRNA targets and known ACM-causative genes revealed clusters of highly related genes involved in cell adhesion, extracellular matrix organization, lipid transport and ephrin receptor signaling. Conclusions We determined for the first time the coding and non-coding transcriptome characteristic of ACM cardiac stromal cells, finding evidence for a potential contribution of miRNAs, specifically miR-29b-3p, to ACM pathogenesis or phenotype maintenance. Electronic supplementary material The online version of this article (10.1186/s12864-018-4876-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Rainer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy.
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy.
| | - Hagen Blankenburg
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Chiara Piubelli
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Adolfo Paolin
- Treviso Tissue Bank Foundation, Piazzalo Ospedale 1, 31100, Treviso, Italy
| | - Elisa Cogliati
- Treviso Tissue Bank Foundation, Piazzalo Ospedale 1, 31100, Treviso, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138, Milan, Italy
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Viale Druso 1, 39100, Bolzano, Italy
| |
Collapse
|
14
|
Inhibition of Gap Junction Elevates Glutamate Uptake in Cultured Astrocytes. Neurochem Res 2017; 43:59-65. [PMID: 28589517 DOI: 10.1007/s11064-017-2316-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
Glutamate uptake is a main function of astrocytes to keep extracellular glutamate levels low and protect neurons against glutamate-induced excitotoxicity. On the other hand, astrocyte networks formed by gap junctions, which are consisted with connexins and connecting neighboring cells, are reported to play a critical role in maintaining the homeostasis in the brain. In the present study, we examined the effects of gap junction inhibitors on the glutamate uptake activity in cultured rat cortical astrocytes. At first, we confirmed the effects of gap junction inhibitors, 1-octanol and carbenoxolone, on cell-cell communication by the scrape-loading assay using a fluorescent dye Lucifer yellow. Both of 1-octanol and carbenoxolone treatments for 20 min in cultured astrocytes significantly suppressed the cell-cell communication assessed as the distance of dye-spreading. 1-octanol and carbenoxolone increased the glutamate uptake by astrocytes and glutamate aspartate transporter (GLAST) expression on the cell membrane. These results suggest that gap junction inhibitors increase the glutamate uptake activity through the increase of GLAST proteins located on the cell membrane. The regulation of gap junction in astrocytes might protect neurons against glutamate-induced excitotoxicity.
Collapse
|
15
|
Das G, Yu Q, Hui R, Reuhl K, Gale NW, Zhou R. EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 2016; 6:48. [PMID: 27489614 PMCID: PMC4971699 DOI: 10.1186/s13578-016-0115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background The Eph family of receptor tyrosine kinases plays important roles in neural development. Previous studies have implicated Eph receptors and their ligands, the ephrins, in neuronal migration, axon bundling and guidance to specific targets, dendritic spine formation and neural plasticity. However, specific contributions of EphA5 and EphA6 receptors to the regulation of neuronal cell morphology have not been well studied. Results Here we show that deletion of EphA5 and EphA6 results in abnormal Golgi staining patterns of cells in the brain, and abnormal spine morphology. Conclusion These observations suggest novel functions of these Eph receptors in the regulation of neuronal and spine structure in brain development and function.
Collapse
Affiliation(s)
- Gitanjali Das
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Qili Yu
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Ryan Hui
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| | | | - Renping Zhou
- Susan L. Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
16
|
EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease. Angiogenesis 2016; 19:297-309. [PMID: 27216867 DOI: 10.1007/s10456-016-9514-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/13/2016] [Indexed: 01/12/2023]
Abstract
Ischemic cardiovascular disease remains one of the leading causes of morbidity and mortality in the world. Proangiogenic therapy appears to be a promising and feasible strategy for the patients with ischemic cardiovascular disease, but the results of preclinical and clinical trials are limited due to the complicated mechanisms of angiogenesis. Facilitating the formation of functional vessels is important in rescuing the ischemic cardiomyocytes. EphrinB2/EphB4, a novel pathway in angiogenesis, plays a critical role in both microvascular growth and neovascular maturation. Hence, investigating the mechanisms of EphrinB2/EphB4 pathway in angiogenesis may contribute to the development of novel therapeutics for ischemic cardiovascular disease. Previous reviews mainly focused on the role of EphrinB2/EphB4 pathway in embryo vascular development, but their role in postnatal angiogenesis in ischemic heart disease has not been fully illustrated. Here, we summarized the current knowledge of EphrinB2/EphB4 in angiogenesis and their interaction with other angiogenic pathways in ischemic cardiovascular disease.
Collapse
|
17
|
Dhein S, Gaertner C, Georgieff C, Salameh A, Schlegel F, Mohr FW. Effects of isoprenaline on endothelial connexins and angiogenesis in a human endothelial cell culture system. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:101-8. [PMID: 25358823 DOI: 10.1007/s00210-014-1059-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
Downregulation of endothelial connexins has been shown to result in impaired angiogenesis. Isoprenaline is known to upregulate Cx43 in cardiomyocytes. Effects of isoprenaline on endothelial connexins are unknown. We wanted to investigate whether isoprenaline might induce upregulation of connexins Cx37, Cx40, or Cx43 in human endothelial cells and whether it may promote angiogenesis. Human umbilical vein endothelial cells (HUVECs) were cultured until confluence (5 days) and subsequently seeded in Matrigel in vitro angiogenesis assays for 18 h. During the entire cell culture and angiogenesis period, cells were treated with vehicle or isoprenaline (100 nM). Finally, the resulting angiogenetic network was investigated (immuno)histologically. Moreover, expression of Cx37, Cx40, and Cx43 was determined by Western blot. In addition, we measured functional intercellular gap junction coupling by dye injection using patch clamp technique. Isoprenaline resulted in significantly enhanced expression of endothelial Cx43 and to a lower degree of Cx40 and Cx37. The number of coupling cells was significantly increased. Regarding angiogenesis, we observed significantly enhanced formation of branches and a higher complexity of the tube networks with more branches/length. Isoprenaline increases endothelial connexin expression and intercellular coupling and promotes tube formation.
Collapse
Affiliation(s)
- Stefan Dhein
- Clinic for Cardiac Surgery, Heart Center Leipzig, University of Leipzig, Struempellstr. 39, 04289, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
19
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
20
|
Farnsworth NL, Benninger RKP. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett 2014; 588:1278-87. [PMID: 24583073 DOI: 10.1016/j.febslet.2014.02.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022]
Abstract
Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling.
Collapse
Affiliation(s)
- Nikki L Farnsworth
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Richard K P Benninger
- Barbara Davis center for childhood diabetes, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States; Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
21
|
Genet G, Guilbeau-Frugier C, Honton B, Dague E, Schneider MD, Coatrieux C, Calise D, Cardin C, Nieto C, Payré B, Dubroca C, Marck P, Heymes C, Dubrac A, Arvanitis D, Despas F, Altié MF, Seguelas MH, Delisle MB, Davy A, Sénard JM, Pathak A, Galés C. Ephrin-B1 Is a Novel Specific Component of the Lateral Membrane of the Cardiomyocyte and Is Essential for the Stability of Cardiac Tissue Architecture Cohesion. Circ Res 2012; 110:688-700. [DOI: 10.1161/circresaha.111.262451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rationale:
Cardiac tissue cohesion relying on highly ordered cardiomyocytes (CM) interactions is critical because most cardiomyopathies are associated with tissue remodeling and architecture alterations.
Objective:
Eph/ephrin system constitutes a ubiquitous system coordinating cellular communications which recently emerged as a major regulator in adult organs. We examined if eph/ephrin could participate in cardiac tissue cyto-organization.
Methods and Results:
We reported the expression of cardiac ephrin-B1 in both endothelial cells and for the first time in CMs where ephrin-B1 localized specifically at the lateral membrane. Ephrin-B1 knock-out (KO) mice progressively developed cardiac tissue disorganization with loss of adult CM rod-shape and sarcomeric and intercalated disk structural disorganization confirmed in CM-specific ephrin-B1 KO mice. CMs lateral membrane exhibited abnormal structure by electron microscopy and notably increased stiffness by atomic force microscopy. In wild-type CMs, ephrin-B1 interacted with claudin-5/ZO-1 complex at the lateral membrane, whereas the complex disappeared in KO/CM-specific ephrin-B1 KO mice. Ephrin-B1 deficiency resulted in decreased mRNA expression of CM basement membrane components and disorganized fibrillar collagen matrix, independently of classical integrin/dystroglycan system. KO/CM-specific ephrin-B1 KO mice exhibited increased left ventricle diameter and delayed atrioventricular conduction. Under pressure overload stress, KO mice were prone to death and exhibited striking tissue disorganization. Finally, failing CMs displayed downregulated ephrin-B1/claudin-5 gene expression linearly related to the ejection fraction.
Conclusions:
Ephrin-B1 is necessary for cardiac tissue architecture cohesion by stabilizing the adult CM morphology through regulation of its lateral membrane. Because decreased ephrin-B1 is associated with molecular/functional cardiac defects, it could represent a new actor in the transition toward heart failure.
Collapse
Affiliation(s)
- Gaël Genet
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Céline Guilbeau-Frugier
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Benjamin Honton
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Etienne Dague
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Michael D. Schneider
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christelle Coatrieux
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Denis Calise
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christelle Cardin
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Cécile Nieto
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Bruno Payré
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Caroline Dubroca
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Pauline Marck
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Christophe Heymes
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Alexandre Dubrac
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Dina Arvanitis
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Fabien Despas
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Françoise Altié
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Hélène Seguelas
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Marie-Bernadette Delisle
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Alice Davy
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Jean-Michel Sénard
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Atul Pathak
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| | - Céline Galés
- From the Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale UMR 1048 (G.G., B.H., C.C., F.D., M.F.A., M.H.S., J.M.S., A.P., C.G., A.D., D.C., C.D., P.M., C.H.), Department of Histopathology (C.G.F., M.B.D.) and of Clinical Pharmacology (F.D., J.M.S., A.P.), Toulouse University Hospital, CNRS; LAAS, ITAV-UMS3039 (E.D.), Centre de Microscopie Électronique Appliquée à la Biologie, Rangueil Medical Faculty (C.N., B.P.), Development biology
| |
Collapse
|
22
|
Noberini R, Rubio de la Torre E, Pasquale EB. Profiling Eph receptor expression in cells and tissues: a targeted mass spectrometry approach. Cell Adh Migr 2012; 6:102-12. [PMID: 22568954 DOI: 10.4161/cam.19620] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.
Collapse
|