1
|
Yang Y, Hao Z, An N, Han Y, Miao W, Storey KB, Lefai E, Liu X, Wang J, Liu S, Xie M, Chang H. Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels. J Cell Physiol 2023; 238:2724-2748. [PMID: 37733616 DOI: 10.1002/jcp.31123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Hibernating mammals are natural models of resistance to ischemia, hypoxia-reperfusion injury, and hypothermia. Daurian ground squirrels (spermophilus dauricus) can adapt to endure multiple torpor-arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin-eosin (HE) staining, Masson staining, echocardiography, and enzyme-linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin-proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine-phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio-protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio-protection mechanisms in mammalian hibernators.
Collapse
Affiliation(s)
- Yingyu Yang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ziwei Hao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Ning An
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuting Han
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Weilan Miao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Etienne Lefai
- INRAE, Unité de Nutrition Humaine, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Xiaoxuan Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Junshu Wang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuo Liu
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Manjiang Xie
- Department of Aerospace Physiology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
3
|
Xie LH, Gwathmey JK, Zhao Z. Cardiac adaptation and cardioprotection against arrhythmias and ischemia-reperfusion injury in mammalian hibernators. Pflugers Arch 2021; 473:407-416. [PMID: 33394082 DOI: 10.1007/s00424-020-02511-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Hibernation allows animals to enter an energy conserving state to survive severe drops in external temperatures and a shortage of food. It has been observed that the hearts of mammalian hibernators exhibit intrinsic protection against ischemia-reperfusion (I/R) injury and cardiac arrhythmias in the winter whether they are hibernating or not. However, the molecular and ionic mechanisms for cardioprotection in mammalian hibernators remain elusive. Recent studies in woodchucks (Marmota monax) have suggested that cardiac adaptation occurs at different levels and mediates an intrinsic cardioprotection prior to/in the winter. The molecular/cellular remodeling in the winter (with or without hibernation) includes (1) an upregulation of transcriptional factor, anti-apoptotic factor, nitric oxide synthase, protein kinase C-ε, and phosphatidylinositol-4,5-bisphosphate 3-kinase; (2) an upregulation of antioxidant enzymes (e.g. superoxide dismutase and catalase); (3) a reduction in the oxidation level of Ca2+/calmodulin-dependent protein kinase II (CaMKII); and (4) alterations in the expression and activity of multiple ion channels/transporters. Therefore, the cardioprotection against I/R injury in the winter is most likely mediated by enhancement in signaling pathways that are shared by preconditioning, reduced cell apoptosis, and increased detoxification of reactive oxygen species (ROS). The resistance to cardiac arrhythmias and sudden cardiac death in the winter is closely associated with an upregulation of the antioxidant catalase and a downregulation of CaMKII activation. This remodeling of the heart is associated with a reduction in the incidence of afterdepolarizations and triggered activities. In this short review article, we will discuss the seasonal changes in gene and protein expression profiles as well as alterations in the function of key proteins that are associated with the occurrence of cardioprotection against myocardial damage from ischemic events and fatal arrhythmias in a mammalian hibernator. Understanding the intrinsic cardiac adaptive mechanisms that confer cardioprotection in hibernators may offer new strategies to protect non-hibernating animals, especially humans, from I/R injury and ischemia-induced fatal cardiac arrhythmias.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
4
|
Liu B, Bai L, Yu Q, Hu F, Wu J, Zhao S, Wang R, Wang W, Tao Y, Fan J, Liu E. iMarmot: an integrative platform for comparative and functional genomics of marmots. BMC Genomics 2020; 21:266. [PMID: 32228437 PMCID: PMC7104516 DOI: 10.1186/s12864-020-6697-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background Marmots are large Holarctic rodents with unique biological features, making them potential animal models in various research fields. Due to the rapid accumulation of the genetic data in marmots, a highly integrative database is urgent needed. Description iMarmot is freely available on the web at http://www.marmotdb.org/ and currently contains the biological information of 14 marmots, genomic sequence of 6 marmots, syntenic relationship and orthologs among 3 marmots, and expression profiles of several hibernators and plague hosts. To assist with the genomic and transcriptomic analysis, we also integrated a set of analysis and visualization tools, such as KEGG or GO enrichment analysis, PCA, Blast, Muscle, GeneWise, Lastz, and JBrowse. Particularly, one DEGs (differentially expressed genes) module has been implemented in this database to visualize the gene expression changes in hibernators and plague hosts. Conclusion This database will provide comprehensive information and analysis platform for researchers interested in understanding the biological features of marmots.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Qingqing Yu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Fang Hu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Jing Wu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, Gansu, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, Qinghai, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, No.76, Yanta West Road, Xi'an, 710061, Shaanxi, China. .,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
6
|
Childers CL, Tessier SN, Storey KB. The heart of a hibernator: EGFR and MAPK signaling in cardiac muscle during the hibernation of thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PeerJ 2019; 7:e7587. [PMID: 31534849 PMCID: PMC6732209 DOI: 10.7717/peerj.7587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) experience dramatic changes in physiological and molecular parameters during winter hibernation. Notably, these animals experience reduced blood circulation during torpor, which can put numerous stresses on their hearts. The present study evaluates the role played by the epidermal growth factor receptor (EGFR) in signal transduction during hibernation at low body temperature to evaluate signaling mechanisms. By investigating the regulation of intracellular mitogen activated protein kinase (MAPK) pathway responses, anti-apoptosis signals, downstream transcription factors, and heat shock proteins in cardiac muscle we aim to determine the correlation between upstream tyrosine phosphorylation events and downstream outcomes. Methods Protein abundance of phosphorylated EGFR, MAPKs and downstream effector proteins were quantified using immunoblotting and Luminex® multiplex assays. Results Monitoring five time points over the torpor/arousal cycle, EGFR phosphorylation on T654, Y1068, Y1086 was found to increase significantly compared with euthermic control values particularly during the arousal process from torpor, whereas phosphorylation at Y1045 was reduced during torpor. Phosphorylation of intracellular MAPK targets (p-ERK 1/2, p-JNK, p-p38) also increased strongly during the early arousal stage with p-p38 levels also rising during prolonged torpor. However, of downstream MAPK effector kinases that were measured, only p-Elk-1 levels changed showing a decrease during interbout arousal (IA). Apoptosis markers revealed a strong reduction of the pro-apoptotic p-BAD protein during entrance into torpor that remained suppressed through torpor and IA. However, active caspase-9 protein rose strongly during IA. Levels of p-AKT were suppressed during the transition phases into and out of torpor. Of four heat shock proteins assessed, only HSP27 protein levels changed significantly (a 40% decrease) during torpor. Conclusion We show evidence of EGFR phosphorylation correlating to activation of MAPK signaling and downstream p-ELK1 suppression during hibernation. We also demonstrate a reduction in p-BAD mediated pro-apoptotic signaling during hibernation with active caspase-9 protein levels increasing only during IA. I. tridecemlineatus has natural mechanisms of tissue protection during hibernation that is largely due to cellular regulation through phosphorylation-mediated signaling cascade. We identify a possible link between EGFR and MAPK signaling via p-ERK, p-p38, and p-JNK in the cardiac muscle of these hibernating mammals that correlates with an apparent reduction in caspase-9 apoptotic signaling. This reveals a piece of the mechanism behind how these mammals are resilient to cardiac stresses during hibernation that would otherwise be damaging.
Collapse
Affiliation(s)
| | - Shannon N Tessier
- BioMEMS Resource Center & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Department of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
7
|
Hadj-Moussa H, Green SR, Storey KB. The Living Dead: Mitochondria and Metabolic Arrest. IUBMB Life 2018; 70:1260-1266. [PMID: 30230676 DOI: 10.1002/iub.1910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
Abstract
Mitochondria are not just the powerhouses of the cell; these 'end of function' organelles are crucial components of cellular physiology and influence many central metabolic and signaling pathways that support complex multicellular life. Not surprisingly, these organelles play vital roles in adaptations for extreme survival strategies including hibernation and freeze tolerance, both of which are united by requirements for a strong reduction and reprioritization of metabolic processes. To facilitate metabolic rate depression, adaptations of all aspects of mitochondrial function are required, including; energetics, physiology, abundance, gene regulation, and enzymatic controls. This review discusses these factors with a focus on the stress-specific nature of mitochondrial genes and transcriptional regulators, and processes including apoptosis and chaperone protein responses. We also analyze the regulation of glutamate dehydrogenase and pyruvate dehydrogenase, central mitochondrial enzymes involved in coordinating the shifts in metabolic fuel use associated with extreme survival strategies. Finally, an emphasis is given to the novel mitochondrial research areas of microRNAs, peptides, epigenetics, and gaseous mediators and their potential roles in facilitating hypometabolism. © 2018 IUBMB Life, 70(12):1260-1266, 2018.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Stuart R Green
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
8
|
Zhao Z, Kudej RK, Wen H, Fefelova N, Yan L, Vatner DE, Vatner SF, Xie LH. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck). FASEB J 2018; 32:4229-4240. [PMID: 29490168 DOI: 10.1096/fj.201701516r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hibernating animals show resistance to hypothermia-induced cardiac arrhythmias. However, it is not clear whether and how mammalian hibernators are resistant to ischemia-induced arrhythmias. The goal of this investigation was to determine the susceptibility of woodchucks ( Marmota monax) to arrhythmias and their mechanisms after coronary artery occlusion at the same room temperature in both winter, the time for hibernation, and summer, when they do not hibernate. By monitoring telemetric electrocardiograms, we found significantly higher arrhythmia scores, calculated as the severity of arrhythmias, with incidence of ventricular tachycardia, ventricular fibrillation, and thus sudden cardiac death (SCD) in woodchucks in summer than they had in winter. The level of catalase expression in woodchuck hearts was significantly higher, whereas the level of oxidized Ca2+/calmodulin-dependent protein kinase II (CaMKII) was lower in winter than it was in summer. Ventricular myocytes isolated from woodchucks in winter were more resistant to H2O2-induced early afterdepolarizations (EADs) compared with myocytes isolated from woodchucks in summer. The EADs were eliminated by inhibiting CaMKII (with KN-93), l-type Ca current (with nifedipine), or late Na+ current (with ranolazine). In woodchucks, in the summer, the arrhythmia score was significantly reduced by overexpression of catalase ( via adenoviral vectors) or the inhibition of CaMKII (with KN-93) in the heart. This study suggests that the heart of the mammalian hibernator is more resistant to ischemia-induced arrhythmias and SCD in winter. Increased antioxidative capacity and reduced CaMKII activity may confer resistance in woodchuck hearts against EADs and arrhythmias during winter. The profound protection conferred by catalase overexpression or CaMKII inhibition in this novel natural animal model may provide insights into clinical directions for therapy of arrhythmias.-Zhao, Z., Kudej, R. K., Wen, H., Fefelova, N., Yan, L., Vatner, D. E., Vatner, S. F., Xie, L.-H. Antioxidant defense and protection against cardiac arrhythmias: lessons from a mammalian hibernator (the woodchuck).
Collapse
Affiliation(s)
- Zhenghang Zhao
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Raymond K Kudej
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,Department of Clinical Sciences, Tufts University, North Grafton, Massachusetts, USA
| | - Hairuo Wen
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.,National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, China
| | - Nadezhda Fefelova
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lin Yan
- Department of Biochemistry and Molecular Biology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
9
|
Shemarova IV, Nesterov VP, Korotkov SM, Sylkin YA. Evolutionary Aspects of Cardioprotection. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Salzman MM, Cheng Q, Deklotz RJ, Dulai GK, Douglas HF, Dikalova AE, Weihrauch D, Barnes BM, Riess ML. Lipid emulsion enhances cardiac performance after ischemia-reperfusion in isolated hearts from summer-active arctic ground squirrels. J Comp Physiol B 2017; 187:715-724. [PMID: 28364393 PMCID: PMC6145465 DOI: 10.1007/s00360-017-1071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
Hibernating mammals, like the arctic ground squirrel (AGS), exhibit robust resistance to myocardial ischemia/reperfusion (IR) injury. Regulated preference for lipid over glucose to fuel metabolism may play an important role. We tested whether providing lipid in an emulsion protects hearts from summer-active AGS better than hearts from Brown Norway (BN) rats against normothermic IR injury. Langendorff-prepared AGS and BN rat hearts were perfused with Krebs solution containing 7.5 mM glucose with or without 1% Intralipid™. After stabilization and cardioplegia, hearts underwent 45-min global ischemia and 60-min reperfusion. Coronary flow, isovolumetric left ventricular pressure, and mitochondrial redox state were measured continuously; infarct size was measured at the end of the experiment. Glucose-only AGS hearts functioned significantly better on reperfusion than BN rat hearts. Intralipid™ administration resulted in additional functional improvement in AGS compared to glucose-only and BN rat hearts. Infarct size was not different among groups. Even under non-hibernating conditions, AGS hearts performed better after IR than the best-protected rat strain. This, however, appears to strongly depend on metabolic fuel: Intralipid™ led to a significant improvement in return of function in AGS, but not in BN rat hearts, suggesting that year-round endogenous mechanisms are involved in myocardial lipid utilization that contributes to improved cardiac performance, independent of the metabolic rate decrease during hibernation. Comparative lipid analysis revealed four candidates as possible cardioprotective lipid groups. The improved function in Intralipid™-perfused AGS hearts also challenges the current paradigm that increased glucose and decreased lipid metabolism are favorable during myocardial IR.
Collapse
Affiliation(s)
- Michele M Salzman
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qunli Cheng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard J Deklotz
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gurpreet K Dulai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hunter F Douglas
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Anna E Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA
| | - Dorothee Weihrauch
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian M Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Matthias L Riess
- Department of Anesthesiology, Vanderbilt University Medical Center, 1161 21st Avenue South, T4202 MCN, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
- TVHS VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Averin AS, Kosarsky LS, Tarlachkov SV, Vekhnik VA, Averina IV, Alekseev AE, Fesenko EE, Nakipova OV. The effects of KB-R7943, an inhibitor of reverse Na+/Ca2+ exchange, on the force of contraction of papillary muscles in the heart of the ground squirrel Spermophilus undulatus. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s000635091701002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Wang L, Wang J, Liu Y, Wang B, Yang S, Yu Q, Roggendorf M, Lu M, Liu J, Yang D. Molecular cloning, characterization and expression analysis of TGF-β and receptor genes in the woodchuck model. Gene 2016; 595:1-8. [PMID: 27637515 DOI: 10.1016/j.gene.2016.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-β) is an important cytokine with pleiotropic regulatory functions in the immune system and in the responses against viral infections. TGF-β acts on a variety of immune cells through the cell surface TGF-β receptor (University of Duisburg-EssenTGFBR). The woodchuck has been used as a biomedical model for studies of obesity and energy balance, endocrine and metabolic function, cardiovascular, cerebrovascular and neoplastic disease. Woodchucks infected with woodchuck hepatitis virus (WHV) represent an informative animal model to study hepatitis B virus (HBV) infection. In this study, the cDNA sequences of woodchuck TGF-β1, TGF-β2, TGFBR1 and TGFBR2 were cloned, sequenced and characterized. The full-length TGFBR1 cDNA sequence consisted of 1305bp coding sequence (CDS) that encoded 434 amino acids with a molecular weight of 48.9kDa. The phylogenetic tree analysis revealed that the woodchuck TGF-β family genes had a closer genetic relationship with Ictidomys tridecemlineatus. One antibody with cross-reactivity to woodchuck TGFBR1 was identified by flow cytometry. Moreover, the expression of these genes were analyzed at the transcriptional level. The quantitative PCR analysis showed that the TGF-β family transcripts were constitutively expressed in many tissues tested. Altered expression levels of the TGF-β family transcripts in the liver of WHV infected woodchucks were observed. These results serve as a foundation for further insight into the role of the TGF-β family in viral hepatitis in woodchuck model. Our work also possesses the potential value for characterizing the TGF-β family in other related diseases, such as obesity-related diseases, metabolic disorder, cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Junzhong Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yana Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Baoju Wang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shangqing Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qing Yu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Michael Roggendorf
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Dongliang Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
13
|
Butterick TA, Hocum Stone L, Duffy C, Holley C, Cabrera JA, Crampton M, Ward HB, Kelly RF, McFalls EO. Pioglitazone increases PGC1-α signaling within chronically ischemic myocardium. Basic Res Cardiol 2016; 111:37. [PMID: 27138931 DOI: 10.1007/s00395-016-0555-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR)-γ drug pioglitazone (PIO) has been shown to protect tissue against oxidant stress. In a swine model of chronic myocardial ischemia, we tested whether PIO increases PGC1-α signaling and the expression of mitochondrial antioxidant peptides. Eighteen pigs underwent a thoracotomy with placement of a fixed constrictor around the LAD artery. At 8 weeks, diet was supplemented with either PIO (3 mg/kg) or placebo for 4 weeks. Regional myocardial function and blood flow were determined at the time of the terminal study. PGC1-α expression was quantified from nuclear membranes by gels and respiration, oxidant stress markers and proteomics by iTRAQ were determined from isolated mitochondria. In the chronically ischemic LAD region, wall thickening from the PIO and control groups was 42 ± 6 and 45 ± 5 %, respectively (NS) with no intergroup differences in basal blood flow (0.72 ± 0.04 versus 0.74 ± 0.04 ml/min g, respectively; NS). In the PIO group, the expression of nuclear bound PGC1-α was higher (11.3 ± 2.6 versus 4.4 ± 1.4 AU; P < 0.05) and the content of mitochondrial antioxidant peptides including superoxide dismutase 2, aldose reductase, glutathione S-transferase and thioredoxin reductase were greater than controls. Although isolated mitochondria from the PIO group showed lower state 3 respiration (102 ± 13 versus 161 ± 22 nmol/min mg; P < 0.05), no differences in oxidant stress were noted by protein carbonyl (1.7 ± 0.7 versus 1.1 ± 0.1 nmol/mg). Chronic pioglitazone does not reduce regional myocardial blood flow or function in a swine model of chronic myocardial ischemia, but may have an important role in increasing expression of antioxidant proteins through PGC1-α signaling.
Collapse
Affiliation(s)
- Tammy A Butterick
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA.,Minnesota Obesity Center, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN, 55108, USA
| | - Laura Hocum Stone
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Cayla Duffy
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA.,Cardiology and Cardiothoracic Surgery Sections, Department of Nutrition, VA Medical Center, Minneapolis, USA
| | - Christopher Holley
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Jesús A Cabrera
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Melanie Crampton
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Herbert B Ward
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Rosemary F Kelly
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA.,Department of Surgery, University of Minnesota, Minneapolis, USA
| | - Edward O McFalls
- Cardiology and Cardiothoracic Surgery Sections, Cardiology (111C), VA Medical Center, 1 Veterans Drive, Minneapolis, MN, 55417, USA. .,Department of Surgery, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
14
|
Zhang Y, Storey KB. Expression of nuclear factor of activated T cells (NFAT) and downstream muscle-specific proteins in ground squirrel skeletal and heart muscle during hibernation. Mol Cell Biochem 2015; 412:27-40. [PMID: 26597853 DOI: 10.1007/s11010-015-2605-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
The thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes remarkable adaptive changes during hibernation. Interestingly, skeletal muscle remodelling occurs during the torpor-arousal cycle of hibernation to prevent net muscle loss despite inactivity. Reversible cardiomyocyte hypertrophy occurs in cardiac muscle, allowing the heart to preserve cardiac output during hibernation, while avoiding chronic maladaptive hypertrophy post-hibernation. We propose that calcium signalling proteins [calcineurin (Cn), calmodulin (CaM), and calpain], the nuclear factor of activated T cell (NFAT) family of transcription factors, and the NFAT targets myoferlin and myomaker contribute significantly to adaptations taking place in skeletal and cardiac muscle during hibernation. Protein-level analyses were performed over several conditions: euthermic room temperature (ER), euthermic cold room (EC), entrance into (EN), early (ET), and late torpor (LT) time points, in addition to early (EA), interbout (IA), and late arousal (LA) time points using immunoblotting and DNA-protein interaction (DPI) enzyme-linked immunosorbent assay (ELISAs). In skeletal and cardiac muscle, NFATc2 protein levels were elevated during torpor. NFATc4 increased throughout the torpor-arousal cycle in both tissues, and NFATc1 showed this trend in cardiac muscle only. NFATc3 showed an elevation in DNA-binding activity but not expression during torpor. Myoferlin protein levels dramatically increased during torpor in both skeletal and cardiac muscle. Myomaker levels also increased significantly in cardiac muscle during torpor. Cardiac Cn levels remained stable, whereas CaM and calpain decreased throughout the torpor-arousal cycle. Activation and/or upregulation of NFATc2, c3, myoferlin, and myomaker at torpor could be part of a stress-response mechanism to preserve skeletal muscle mass, whereas CaM and calpain appear to initiate the rapid reversal of cardiac hypertrophy during arousal through downregulation of the NFAT-Cn pathway.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
15
|
Heinis FI, Vermillion KL, Andrews MT, Metzger JM. Myocardial performance and adaptive energy pathways in a torpid mammalian hibernator. Am J Physiol Regul Integr Comp Physiol 2015; 309:R368-77. [PMID: 26017496 DOI: 10.1152/ajpregu.00365.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
The hearts of mammalian hibernators maintain contractile function in the face of severe environmental stresses during winter heterothermy. To enable survival in torpor, hibernators regulate the expression of numerous genes involved in excitation-contraction coupling, metabolism, and stress response pathways. Understanding the basis of this transition may provide new insights into treatment of human cardiac disease. Few studies have investigated hibernator heart performance during both summer active and winter torpid states, and seasonal comparisons of whole heart function are generally lacking. We investigated the force-frequency relationship and the response to ex vivo ischemia-reperfusion in intact isolated hearts from 13-lined ground squirrels (Ictidomys tridecemlineatus) in the summer (active, July) and winter (torpid, January). In standard euthermic conditions, we found that winter hearts relaxed more rapidly than summer hearts at low to moderate pacing frequencies, even though systolic function was similar in both seasons. Proteome data support the hypothesis that enhanced Ca(2+) handling in winter torpid hearts underlies the increased relaxation rate. Additionally, winter hearts developed significantly less rigor contracture during ischemia than summer hearts, while recovery during reperfusion was similar in hearts between seasons. Winter torpid hearts have an increased glycogen content, which likely reduces development of rigor contracture during the ischemic event due to anaerobic ATP production. These cardioprotective mechanisms are important for the hibernation phenotype and highlight the resistance to hypoxic stress in the hibernator.
Collapse
Affiliation(s)
- Frazer I Heinis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis Medical School, Minnesota; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| | - Katie L Vermillion
- Department of Biology, University of Minnesota-Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota-Duluth, Duluth, Minnesota
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota; and
| |
Collapse
|