1
|
Lugenbiel P. Gene therapy targeting INa to treat life-threatening arrhythmias: beyond proof-of-concept? Eur Heart J 2025; 46:1763-1765. [PMID: 39981909 DOI: 10.1093/eurheartj/ehae930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Yashiro K, Iwaki Y, Urata H, Kokubo M, Mori T, Sekioka Y, Isami K, Kato J, Wieting J, McGowan KM, Bridges TM, Boutaud O, Engers DW, Denton JS, Kurata H, Lindsley CW. Discovery of ONO-2920632 (VU6011887): A Highly Selective and CNS Penetrant TREK-2 (TWIK-Related K+ Channel 2) Preferring Activator In Vivo Tool Compound. ACS Chem Neurosci 2025; 16:960-967. [PMID: 39981749 PMCID: PMC11887051 DOI: 10.1021/acschemneuro.5c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Herein we describe our initial work on the K2P family of potassium ion channels with the chemical optimization and characterization of a novel series of TWIK-Related K+ Channel (TREK)-1/2 dual activators and TREK-2 preferring activators derived from a high-throughput screening hit. The exercise provided TREK activators with good CNS penetration and others with low CNS exposure to enable exploration of both central and peripheral TREK activation. From this, ONO-2920632 (VU6011887 = 19b) emerged as a reasonably potent (human Tl+; TREK-1 EC50 = 2.8 μM (95% Emax), TREK-2 EC50 = 0.30 μM (184% Emax)), first-generation CNS penetrant (rat Kp = 0.37) in vivo tool compound with selectivity versus the other K2P channels (>91-fold selective vs TASK1, TASK2, TASK3, TRAAK, TWIK2, and 31-fold selective vs TRESK) and no significant activity in a large ancillary pharmacology panel. ONO-2920632 (VU6011887) displayed robust, dose dependent efficacy when dosed orally in a mouse pain model (acetic acid writhing assay), where it was equipotent at 3 mg/kg to the assay standard indomethacin at 10 mg/kg. The therapeutic potential of TREK channel activation has long been hampered by a lack of selective, small molecule tools, and this work provides a variety of in vivo tool compounds for the community.
Collapse
Affiliation(s)
- Kentaro Yashiro
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yuzo Iwaki
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Hirohito Urata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Masaya Kokubo
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Takahiro Mori
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Yoko Sekioka
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Koichi Isami
- Research
Center of Neurology, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Junya Kato
- Pharmacokinetic
Research, Ono Pharmaceutical Co., Ltd, 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Joshua Wieting
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. McGowan
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Thomas M. Bridges
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jerod S. Denton
- Department
of Anesthesiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Haruto Kurata
- Drug
Discovery Chemistry, Ono Pharmaceutical
Co., Ltd, 3-1-1 Sakurai,
Shimamoto, Mishima, Osaka 618-8585, Japan
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Chemistry, Vanderbilt University, Nashville Tennessee 37232, United States
- Department
of Biochemistry, Vanderbilt University, Nashville Tennessee 37232, United States
| |
Collapse
|
3
|
Li J, Janin A, Patoughi M, Gaudreault N, Kis L, Moha Ou Maati H, Bossé Y, Steinberg C. Circulating Autoantibodies Targeting TREK-1 in Patients With Short-Coupled Ventricular Fibrillation. Circulation 2024; 150:1944-1954. [PMID: 39315453 DOI: 10.1161/circulationaha.124.070284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Short-coupled ventricular fibrillation (SCVF) is increasingly being recognized as a distinct primary electrical disorder and cause of otherwise unexplained cardiac arrest. However, the pathophysiology of SCVF remains largely elusive. Despite extensive genetic screening, there is no convincing evidence of a robust monogenic disease gene, thus raising the speculations for alternative pathogeneses. The role of autoimmune mechanisms in SCVF has not been investigated so far. The objective of this study was to screen for circulating autoantibodies in patients with SCVF and assess their role in arrhythmogenesis. METHODS This is a prospective, single-center, case-control study enrolling cardiac arrest survivors diagnosed with SCVF or idiopathic ventricular fibrillation (IVF) between 2019 and 2023 at the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval Inherited Arrhythmia Clinic in Canada. Plasma samples were screened for autoantibodies targeting cardiac ion channels using peptide microarray technology. Identified target autoantibodies were then purified from pooled plasma samples for subsequent cellular electrophysiological studies. RESULTS Fourteen patients with SCVF (n=4 [29% of patients] female patients; median age, 45 years [interquartile range: 36, 59]; n=14 [100% of patients] non-Hispanic White) and 19 patients with idiopathic ventricular fibrillation (n=8 [42%] female patients; median age, 49 years [38, 57]; n=19 [100%] non-Hispanic White) were enrolled in the study and compared with 38 (n=20 [53%] female subjects; median age, 45 years [29, 66]; n=36 [95%] non-Hispanic White) sex-, age- and ethnicity-matched healthy controls. During the study period, 11 (79%) SCVF probands experienced ventricular fibrillation recurrence after a median of 4.3 months (interquartile range, 0.3-20.7). Autoantibodies targeting cardiac TREK-1 (TWIK [tandem of pore-domains in a weakly inward rectifying potassium channel]-related potassium channel 1 were identified in 7 (50%) patients with SCVF (P=0.049). Patch clamp experiments demonstrated channel-activating properties of anti-TREK-1 autoantibodies that are antagonized by quinidine in both HEK293 cells and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS Patients with SCVF harbor circulating autoantibodies against the cardiac TREK-1 channel. Anti-TREK-1 autoantibodies not only present the first reported biomarker for SCVF, but our functional studies also suggest a direct implication in the arrhythmogenesis of SCVF.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology, University of Bern, Switzerland (J.L.)
| | - Alexandre Janin
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
- Université Claude Bernard Lyon 1, Université de Lyon, France (A.J.)
| | - Mona Patoughi
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| | - Nathalie Gaudreault
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| | - Lenke Kis
- Università della Svizzera Italiana, Lugano, Switzerland (L.K.)
| | - Hamid Moha Ou Maati
- Institut des Neurosciences de Montpellier, INSERM U1298, CHU Hôpital Saint Eloi, Université de Montpellier, France (H.M.O.M.)
| | - Yohan Bossé
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
- Department of Molecular Medicine (Y.B.)
- Laval University, Quebec City, Canada (Y.B.)
| | - Christian Steinberg
- Department of Medicine (C.S.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| |
Collapse
|
4
|
Müller ME, Petersenn F, Hackbarth J, Pfeiffer J, Gampp H, Frey N, Lugenbiel P, Thomas D, Rahm AK. Electrophysiological Effects of the Sodium-Glucose Co-Transporter-2 (SGLT2) Inhibitor Dapagliflozin on Human Cardiac Potassium Channels. Int J Mol Sci 2024; 25:5701. [PMID: 38891889 PMCID: PMC11172209 DOI: 10.3390/ijms25115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin is increasingly used in the treatment of diabetes and heart failure. Dapagliflozin has been associated with reduced incidence of atrial fibrillation (AF) in clinical trials. We hypothesized that the favorable antiarrhythmic outcome of dapagliflozin use may be caused in part by previously unrecognized effects on atrial repolarizing potassium (K+) channels. This study was designed to assess direct pharmacological effects of dapagliflozin on cloned ion channels Kv11.1, Kv1.5, Kv4.3, Kir2.1, K2P2.1, K2P3.1, and K2P17.1, contributing to IKur, Ito, IKr, IK1, and IK2P K+ currents. Human channels coded by KCNH2, KCNA5, KCND3, KCNJ2, KCNK2, KCNK3, and KCNK17 were heterologously expressed in Xenopus laevis oocytes, and currents were recorded using the voltage clamp technique. Dapagliflozin (100 µM) reduced Kv11.1 and Kv1.5 currents, whereas Kir2.1, K2P2.1, and K2P17.1 currents were enhanced. The drug did not significantly affect peak current amplitudes of Kv4.3 or K2P3.1 K+ channels. Biophysical characterization did not reveal significant effects of dapagliflozin on current-voltage relationships of study channels. In conclusion, dapagliflozin exhibits direct functional interactions with human atrial K+ channels underlying IKur, IKr, IK1, and IK2P currents. Substantial activation of K2P2.1 and K2P17.1 currents could contribute to the beneficial antiarrhythmic outcome associated with the drug. Indirect or chronic effects remain to be investigated in vivo.
Collapse
Affiliation(s)
- Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Finn Petersenn
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Juline Hackbarth
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Julia Pfeiffer
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (M.E.M.); (P.L.); (D.T.)
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg University, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Reisqs JB, Qu YS, Boutjdir M. Ion channel trafficking implications in heart failure. Front Cardiovasc Med 2024; 11:1351496. [PMID: 38420267 PMCID: PMC10899472 DOI: 10.3389/fcvm.2024.1351496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Heart failure (HF) is recognized as an epidemic in the contemporary world, impacting around 1%-2% of the adult population and affecting around 6 million Americans. HF remains a major cause of mortality, morbidity, and poor quality of life. Several therapies are used to treat HF and improve the survival of patients; however, despite these substantial improvements in treating HF, the incidence of HF is increasing rapidly, posing a significant burden to human health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a better understanding of the mechanisms involved in HF. Among the most serious manifestations associated with HF is arrhythmia due to the electrophysiological changes within the cardiomyocyte. Among these electrophysiological changes, disruptions in sodium and potassium currents' function and trafficking, as well as calcium handling, all of which impact arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring, organization, and recycling of ion channels at the plasma membrane seem to be significant contributors to ion channels dysfunction in HF. Variants, microtubule alterations, or disturbances of anchoring proteins lead to ion channel trafficking defects and the alteration of the cardiomyocyte's electrophysiology. Understanding the mechanisms of ion channels trafficking could provide new therapeutic approaches for the treatment of HF. This review provides an overview of the recent advances in ion channel trafficking in HF.
Collapse
Affiliation(s)
- Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, United States
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
6
|
Parent S, Vaka R, Risha Y, Ngo C, Kanda P, Nattel S, Khan S, Courtman D, Stewart DJ, Davis DR. Prevention of atrial fibrillation after open-chest surgery with extracellular vesicle therapy. JCI Insight 2023; 8:e163297. [PMID: 37384420 PMCID: PMC10481795 DOI: 10.1172/jci.insight.163297] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
Almost half of patients recovering from open-chest surgery experience atrial fibrillation (AF) that results principally from inflammation in the pericardial space surrounding the heart. Given that postoperative AF is associated with increased mortality, effective measures to prevent AF after open-chest surgery are highly desirable. In this study, we tested the concept that extracellular vesicles (EVs) isolated from human atrial explant-derived cells can prevent postoperative AF. Middle-aged female and male rats were randomized to undergo sham operation or induction of sterile pericarditis followed by trans-epicardial injection of human EVs or vehicle into the atrial tissue. Pericarditis increased the probability of inducing AF while EV treatment abrogated this effect in a sex-independent manner. EV treatment reduced infiltration of inflammatory cells and production of pro-inflammatory cytokines. Atrial fibrosis and hypertrophy seen after pericarditis were markedly attenuated by EV pretreatment, an effect attributable to suppression of fibroblast proliferation by EVs. Our study demonstrates that injection of EVs at the time of open-chest surgery shows prominent antiinflammatory effects and prevents AF due to sterile pericarditis. Translation of this finding to patients might provide an effective new strategy to prevent postoperative AF by reducing atrial inflammation and fibrosis.
Collapse
Affiliation(s)
- Sandrine Parent
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramana Vaka
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
| | - Yousef Risha
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
| | - Clarissa Ngo
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
| | - Pushpinder Kanda
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stanley Nattel
- Research Center and Department of Medicine, Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Saad Khan
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Courtman
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Duncan J. Stewart
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Darryl R. Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, and
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
8
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
9
|
Bechard E, Bride J, Le Guennec JY, Brette F, Demion M. TREK-1 in the heart: Potential physiological and pathophysiological roles. Front Physiol 2022; 13:1095102. [PMID: 36620226 PMCID: PMC9815770 DOI: 10.3389/fphys.2022.1095102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The TREK-1 channel belongs to the TREK subfamily of two-pore domains channels that are activated by stretch and polyunsaturated fatty acids and inactivated by Protein Kinase A phosphorylation. The activation of this potassium channel must induce a hyperpolarization of the resting membrane potential and a shortening of the action potential duration in neurons and cardiac cells, two phenomena being beneficial for these tissues in pathological situations like ischemia-reperfusion. Surprisingly, the physiological role of TREK-1 in cardiac function has never been thoroughly investigated, very likely because of the lack of a specific inhibitor. However, possible roles have been unraveled in pathological situations such as atrial fibrillation worsened by heart failure, right ventricular outflow tract tachycardia or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1 channel within the heart reinforces the idea that this stretch-activated potassium channel might play a role in cardiac areas where the mechanical constraints are important and need a particular protection afforded by TREK-1. Consequently, the main purpose of this mini review is to discuss the possible role played by TREK -1 in physiological and pathophysiological conditions and its potential role in mechano-electrical feedback. Improved understanding of the role of TREK-1 in the heart may help the development of promising treatments for challenging cardiac diseases.
Collapse
|
10
|
A Review on Atrial Fibrillation (Computer Simulation and Clinical Perspectives). HEARTS 2022. [DOI: 10.3390/hearts3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atrial fibrillation (AF), a heart condition, has been a well-researched topic for the past few decades. This multidisciplinary field of study deals with signal processing, finite element analysis, mathematical modeling, optimization, and clinical procedure. This article is focused on a comprehensive review of journal articles published in the field of AF. Topics from the age-old fundamental concepts to specialized modern techniques involved in today’s AF research are discussed. It was found that a lot of research articles have already been published in modeling and simulation of AF. In comparison to that, the diagnosis and post-operative procedures for AF patients have not yet been totally understood or explored by the researchers. The simulation and modeling of AF have been investigated by many researchers in this field. Cellular model, tissue model, and geometric model among others have been used to simulate AF. Due to a very complex nature, the causes of AF have not been fully perceived to date, but the simulated results are validated with real-life patient data. Many algorithms have been proposed to detect the source of AF in human atria. There are many ablation strategies for AF patients, but the search for more efficient ablation strategies is still going on. AF management for patients with different stages of AF has been discussed in the literature as well but is somehow limited mostly to the patients with persistent AF. The authors hope that this study helps to find existing research gaps in the analysis and the diagnosis of AF.
Collapse
|
11
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
12
|
Wang Y, Fu Z, Ma Z, Li N, Shang H. Bepridil, a class IV antiarrhythmic agent, can block the TREK-1 potassium channel. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1123. [PMID: 34430564 PMCID: PMC8350656 DOI: 10.21037/atm-20-7971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
Background The TWIK-related potassium channel (TREK-1) can be regulated by different stimuli. However, it is not clear whether some antiarrhythmics affect the activity of TREK-1. In the present study, the effect of bepridil on the TREK-1 currents is investigated. Methods In a TREK-1 stably-expressed HEK-293 cell line (HEK-TREK-1), U251MG cells, and isolated mouse ventricular myocytes, the TREK-1 current and action potentials were recorded by the patch-clamp technique. The standard voltage protocol was a 200 ms constant potential at 20 mV, followed bya 500 ms ramp from –90 to +20 mV (HEK-TREK-1) or +80 mV (U251MG cells and myocytes) every 10 s. The currents at +20 mV or +80 mV were used for analysis. The docking study of bepridil’s binding model in the TREK-1 channel was performed using the Swissdock web service. Results In HEK-TREK-1 cells, BL1249 induced a significantly large outwardly rectifying current with similar baseline TREK-1 current characteristic, with a reversal potential (−70 mV). The concentration of half-maximal activation (EC50) of BL1249 was 3.45 µM. However, bepridil decreased the baseline TREK-1 currents, with a concentration of half-maximal inhibition (IC50) 0.59 µM and a Hill coefficient of 1.1. Also, bepridil inhibited BL1249-activated TREK-1 currents, with an IC50 4.08 µM and a Hill coefficient of 3.22. The outside-out patch-clamp confirmed bepridil inhibited BL1249-activated TREK-1 currents. In U251MG cells and myocytes, BL1249 activated outwardly rectifying endogenous TREK-1 currents, which could be inhibited by bepridil. BL1249 (10 µM) could decrease the peak value and reduce the duration of the action potential. Bepridil (10 µM) prolonged the duration of action potential of myocytes. The docking study revealed that bepridil might affect the K+ pore domain and the M4 modulator pocket. Conclusions Bepridil may be a blocker for the TREK-1K+channel at a clinically therapeutic concentration, providing a new mechanism of TREK-1 regulation and bepridil's antiarrhythmic effect.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhijie Fu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China.,Department of Otorhinolaryngology, the First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhiyong Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hong Shang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
14
|
Histone deacetylase 2-dependent ventricular electrical remodeling in a porcine model of early heart failure. Life Sci 2021; 281:119769. [PMID: 34186046 DOI: 10.1016/j.lfs.2021.119769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
AIMS Heart failure (HF) is linked to electrical remodeling that promotes ventricular arrhythmias. Underlying molecular signaling is insufficiently understood, in particular concerning patients with early disease stages. Previous observations suggest a key role for epigenetic mechanisms in cardiac remodeling processes. We hypothesized that histone deacetylases (HDACs) 1 and 2 contribute to cellular electrophysiological dysregulation in ventricular cardiomyocytes during HF development. MATERIALS AND METHODS HDAC and ion channel expression was quantified in a porcine model of early HF induced by short-term atrial tachypacing, resulting in atrial fibrillation with rapid ventricular rate response. Anti-Hdac1 and anti-Hdac2 siRNA treatment was employed in neonatal murine cardiomyocytes (NMCM) to study effects of HDACs on ion channel mRNA expression and action potential duration (APD). KEY FINDINGS Early HF was characterized by mild reduction of left ventricular ejection fraction, prolonged QTc intervals, and increased ventricular effective refractory periods. Delayed repolarization was linked to significant downregulation of HDAC2 in left ventricular (LV) tissue. In addition, there was a tendency towards reduced transcript expression of KCNJ2/Kir2.1 K+ channels. In NMCM, knock-down of Hdac2 recapitulated AP prolongation. Finally, siRNA-mediated suppression of Hdac2 reduced Kcnh2/Kv11.1 K+ channel expression. SIGNIFICANCE Suppression of HDAC2 is linked to ventricular electrical remodeling of APD and ion channel expression in early stages of heart failure. This previously unrecognized mechanism may serve as basis for future approaches to prevention and treatment of ventricular arrhythmias.
Collapse
|
15
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Sandke S, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. Differential regulation of K Ca 2.1 (KCNN1) K + channel expression by histone deacetylases in atrial fibrillation with concomitant heart failure. Physiol Rep 2021; 9:e14835. [PMID: 34111326 PMCID: PMC8191401 DOI: 10.14814/phy2.14835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
Atrial fibrillation (AF) with concomitant heart failure (HF) poses a significant therapeutic challenge. Mechanism‐based approaches may optimize AF therapy. Small‐conductance, calcium‐activated K+ (KCa, KCNN) channels contribute to cardiac action potential repolarization. KCNN1 exhibits predominant atrial expression and is downregulated in chronic AF patients with preserved cardiac function. Epigenetic regulation is suggested by AF suppression following histone deacetylase (HDAC) inhibition. We hypothesized that HDAC‐dependent KCNN1 remodeling contributes to arrhythmogenesis in AF complicated by HF. The aim of this study was to assess KCNN1 and HDAC1–7 and 9 transcript levels in AF/HF patients and in a pig model of atrial tachypacing‐induced AF with reduced left ventricular function. In HL‐1 atrial myocytes, tachypacing and anti‐Hdac siRNAs were employed to investigate effects on Kcnn1 mRNA levels. KCNN1 expression displayed side‐specific remodeling in AF/HF patients with upregulation in left and suppression in right atrium. In pigs, KCNN1 remodeling showed intermediate phenotypes. HDAC levels were differentially altered in humans and pigs, reflecting highly variable epigenetic regulation. Tachypacing recapitulated downregulation of Hdacs1, 3, 4, 6, and 7 with a tendency towards reduced Kcnn1 levels in vitro, indicating that atrial high rates induce remodeling. Finally, Kcnn1 expression was decreased by knockdown of Hdacs2, 3, 6, and 7 and enhanced by genetic Hdac9 inactivation, while anti‐Hdac1, 4, and 5 siRNAs did not affect Kcnn1 transcript levels. In conclusion, KCNN1 and HDAC expression is differentially remodeled in AF complicated by HF. Direct regulation of KCNN1 by HDACs in atrial myocytes provides a basis for mechanism‐based antiarrhythmic therapy.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Steffi Sandke
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Rahm AK, Gramlich D, Wieder T, Müller ME, Schoeffel A, El Tahry FA, Most P, Heimberger T, Sandke S, Weis T, Ullrich ND, Korff T, Lugenbiel P, Katus HA, Thomas D. Trigger-Specific Remodeling of K Ca2 Potassium Channels in Models of Atrial Fibrillation. Pharmgenomics Pers Med 2021; 14:579-590. [PMID: 34045886 PMCID: PMC8144362 DOI: 10.2147/pgpm.s290291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
AIM Effective antiarrhythmic treatment of atrial fibrillation (AF) constitutes a major challenge, in particular, when concomitant heart failure (HF) is present. HF-associated atrial arrhythmogenesis is distinctly characterized by prolonged atrial refractoriness. Small-conductance, calcium-activated K+ (KCa, SK, KCNN) channels contribute to cardiac action potential repolarization and are implicated in AF susceptibility and therapy. The mechanistic impact of AF/HF-related triggers on atrial KCa channels is not known. We hypothesized that tachycardia, stretch, β-adrenergic stimulation, and hypoxia differentially determine KCa2.1-2.3 channel remodeling in atrial cells. METHODS KCNN1-3 transcript levels were assessed in AF/HF patients and in a pig model of atrial tachypacing-induced AF with reduced left ventricular function. HL-1 atrial myocytes were subjected to proarrhythmic triggers to investigate the effects on Kcnn mRNA and KCa channel protein. RESULTS Atrial KCNN1-3 expression was reduced in AF/HF patients. KCNN2 and KCNN3 suppression was recapitulated in the corresponding pig model. In contrast to human AF, KCNN1 remained unchanged in pigs. Channel- and stressor-specific remodeling was revealed in vitro. Lower expression levels of KCNN1/KCa2.1 were linked to stretch and β-adrenergic stimulation. Furthermore, KCNN3/KCa2.3 expression was suppressed upon tachypacing and hypoxia. Finally, KCNN2/KCa2.2 abundance was specifically enhanced by hypoxia. CONCLUSION Reduction of KCa2.1-2.3 channel expression might contribute to the action potential prolongation in AF complicated by HF. Subtype-specific KCa2 channel remodeling induced by tachypacing, stretch, β-adrenergic stimulation, or hypoxia is expected to differentially determine atrial remodeling, depending on patient-specific activation of each triggering factor. Stressor-dependent KCa2 regulation in atrial myocytes provides a starting point for mechanism-based antiarrhythmic therapy.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Axel Schoeffel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Steffi Sandke
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, 69120, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, 69120, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, 69120, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, 69120, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
17
|
Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes. J Cardiovasc Dev Dis 2021; 8:jcdd8050048. [PMID: 33946725 PMCID: PMC8146975 DOI: 10.3390/jcdd8050048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac conduction system is an extended network of excitable tissue tasked with generation and propagation of electrical impulses to signal coordinated contraction of the heart. The fidelity of this system depends on the proper spatio-temporal regulation of ion channels in myocytes throughout the conduction system. Importantly, inherited or acquired defects in a wide class of ion channels has been linked to dysfunction at various stages of the conduction system resulting in life-threatening cardiac arrhythmia. There is growing appreciation of the role that adapter and cytoskeletal proteins play in organizing ion channel macromolecular complexes critical for proper function of the cardiac conduction system. In particular, members of the ankyrin and spectrin families have emerged as important nodes for normal expression and regulation of ion channels in myocytes throughout the conduction system. Human variants impacting ankyrin/spectrin function give rise to a broad constellation of cardiac arrhythmias. Furthermore, chronic neurohumoral and biomechanical stress promotes ankyrin/spectrin loss of function that likely contributes to conduction disturbances in the setting of acquired cardiac disease. Collectively, this review seeks to bring attention to the significance of these cytoskeletal players and emphasize the potential therapeutic role they represent in a myriad of cardiac disease states.
Collapse
|
18
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
19
|
Huang L, Xu G, Jiang R, Luo Y, Zuo Y, Liu J. Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels. Curr Neuropharmacol 2021; 20:16-26. [PMID: 33827408 PMCID: PMC9199554 DOI: 10.2174/1570159x19666210407152528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Two-pore domain potassium (K2P) channels are a diverse family of potassium channels. K2P channels generate background leak potassium currents to regulate cellular excitability and are thereby involved in a wide range of neurological disorders. K2P channels are modulated by a variety of physicochemical factors such as mechanical stretch, temperature, and pH. In the the peripheral nervous system (PNS), K2P channels are widely expressed in nociceptive neurons and play a critical roles in pain perception. In this review, we summarize the recent advances in the pharmacological properties of K2P channels, with a focus on the exogenous small-molecule activators targeting K2P channels. We emphasize the subtype-selectivity, cellular and in vivo pharmacological properties of all the reported small-molecule activators. The key underlying analgesic mechanisms mediated by K2P are also summarized based on the data in the literature from studies using small-molecule activators and genetic knock-out animals. We discuss advantages and limitations of the translational perspectives of K2P in pain medicine and provide outstanding questions for future studies in the end.
Collapse
Affiliation(s)
- Lu Huang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Guangyin Xu
- Department of Physiology and Neurobiology, Institute of Neuroscience, Medical College of Soochow University, Suzhou, 215123, Jiangsu. China
| | - Ruotian Jiang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yuncheng Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Yunxia Zuo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610000, Sichuan. China
| |
Collapse
|
20
|
Lugenbiel P, Govorov K, Syren P, Rahm AK, Wieder T, Wunsch M, Weiberg N, Manolova E, Gramlich D, Rivinius R, Finke D, Lehmann LH, Schweizer PA, Frank D, El Tahry FA, Bruehl C, Heimberger T, Sandke S, Weis T, Most P, Schmack B, Ruhparwar A, Karck M, Frey N, Katus HA, Thomas D. Epigenetic regulation of cardiac electrophysiology in atrial fibrillation: HDAC2 determines action potential duration and suppresses NRSF in cardiomyocytes. Basic Res Cardiol 2021; 116:13. [PMID: 33630168 DOI: 10.1007/s00395-021-00855-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is associated with electrical remodeling, leading to cellular electrophysiological dysfunction and arrhythmia perpetuation. Emerging evidence suggests a key role for epigenetic mechanisms in the regulation of ion channel expression. Histone deacetylases (HDACs) control gene expression through deacetylation of histone proteins. We hypothesized that class I HDACs in complex with neuron-restrictive silencer factor (NRSF) determine atrial K+ channel expression. AF was characterized by reduced atrial HDAC2 mRNA levels and upregulation of NRSF in humans and in a pig model, with regional differences between right and left atrium. In vitro studies revealed inverse regulation of Hdac2 and Nrsf in HL-1 atrial myocytes. A direct association of HDAC2 with active regulatory elements of cardiac K+ channels was revealed by chromatin immunoprecipitation. Specific knock-down of Hdac2 and Nrsf induced alterations of K+ channel expression. Hdac2 knock-down resulted in prolongation of action potential duration (APD) in neonatal rat cardiomyocytes, whereas inactivation of Nrsf induced APD shortening. Potential AF-related triggers were recapitulated by experimental tachypacing and mechanical stretch, respectively, and exerted differential effects on the expression of class I HDACs and K+ channels in cardiomyocytes. In conclusion, HDAC2 and NRSF contribute to AF-associated remodeling of APD and K+ channel expression in cardiomyocytes via direct interaction with regulatory chromatin regions. Specific modulation of these factors may provide a starting point for the development of more individualized treatment options for atrial fibrillation.
Collapse
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Katharina Govorov
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Maximilian Wunsch
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Nadine Weiberg
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Emili Manolova
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Daniel Finke
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- Department of Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenz H Lehmann
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- Department of Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Derk Frank
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claus Bruehl
- Institute for Physiology and Pathophysiology, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Steffi Sandke
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. HDAC2-dependent remodeling of K Ca2.2 (KCNN2) and K Ca2.3 (KCNN3) K + channels in atrial fibrillation with concomitant heart failure. Life Sci 2020; 266:118892. [PMID: 33310041 DOI: 10.1016/j.lfs.2020.118892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Atrial fibrillation (AF) with concomitant heart failure (HF) is associated with prolonged atrial refractoriness. Small-conductance, calcium-activated K+ (KCa, KCNN) channels promote action potential (AP) repolarization. KCNN2 and KCNN3 variants are associated with AF risk. In addition, histone deacetylase (HDAC)-related epigenetic mechanisms have been implicated in AP regulation. We hypothesized that HDAC2-dependent remodeling of KCNN2 and KCNN3 expression contributes to atrial arrhythmogenesis in AF complicated by HF. The objectives were to assess HDAC2 and KCNN2/3 transcript levels in AF/HF patients and in a pig model, and to investigate cellular epigenetic effects of HDAC2 inactivation on KCNN expression. MATERIALS AND METHODS HDAC2 and KCNN2/3 transcript levels were quantified in patients with AF and HF, and in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. Tachypacing and anti-Hdac2 siRNA treatment were employed in HL-1 atrial myocytes to study effects on KCNN2/3 mRNA and KCa protein abundance. KEY FINDINGS Atrial KCNN2 and KCNN3 expression was reduced in AF/HF patients and in a corresponding pig model. HDAC2 displayed significant downregulation in humans and a tendency towards reduced expression in right atrial tissue of pigs. Tachypacing recapitulated downregulation of Kcnn2/KCa2.2, Kcnn3/KCa2.3 and Hdac2/HDAC2, indicating that high atrial rates trigger epigenetic remodeling mechanisms. Finally, knock-down of Hdac2 in vitro reduced Kcnn3/KCa2.3 expression. SIGNIFICANCE KCNN2/3 and HDAC2 expression is suppressed in AF complicated by HF. Hdac2 directly regulates Kcnn3 mRNA levels in atrial cells. The mechanistic and therapeutic significance of epigenetic electrophysiological effects in AF requires further validation.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Wiedmann F, Rinné S, Donner B, Decher N, Katus HA, Schmidt C. Mechanosensitive TREK-1 two-pore-domain potassium (K 2P) channels in the cardiovascular system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:126-135. [PMID: 32553901 DOI: 10.1016/j.pbiomolbio.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
TWIK-related K+ channel (TREK-1) two-pore-domain potassium (K2P) channels mediate background potassium currents and regulate cellular excitability in many different types of cells. Their functional activity is controlled by a broad variety of different physiological stimuli, such as temperature, extracellular or intracellular pH, lipids and mechanical stress. By linking cellular excitability to mechanical stress, TREK-1 currents might be important to mediate parts of the mechanoelectrical feedback described in the heart. Furthermore, TREK-1 currents might contribute to the dysregulation of excitability in the heart in pathophysiological situations, such as those caused by abnormal stretch or ischaemia-associated cell swelling, thereby contributing to arrhythmogenesis. In this review, we focus on the functional role of TREK-1 in the heart and its putative contribution to cardiac mechanoelectrical coupling. Its cardiac expression among different species is discussed, alongside with functional evidence for TREK-1 currents in cardiomyocytes. In addition, evidence for the involvement of TREK-1 currents in different cardiac arrhythmias, such as atrial fibrillation or ventricular tachycardia, is summarized. Furthermore, the role of TREK-1 and its interaction partners in the regulation of the cardiac heart rate is reviewed. Finally, we focus on the significance of TREK-1 in the development of cardiac hypertrophy, cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Birgit Donner
- Pediatric Cardiology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
24
|
Darkow E, Rog-Zielinska EA, Madl J, Brandel A, Siukstaite L, Omidvar R, Kohl P, Ravens U, Römer W, Peyronnet R. The Lectin LecA Sensitizes the Human Stretch-Activated Channel TREK-1 but Not Piezo1 and Binds Selectively to Cardiac Non-myocytes. Front Physiol 2020; 11:457. [PMID: 32499717 PMCID: PMC7243936 DOI: 10.3389/fphys.2020.00457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
The healthy heart adapts continuously to a complex set of dynamically changing mechanical conditions. The mechanical environment is altered by, and contributes to, multiple cardiac diseases. Mechanical stimuli are detected and transduced by cellular mechano-sensors, including stretch-activated ion channels (SAC). The precise role of SAC in the heart is unclear, in part because there are few SAC-specific pharmacological modulators. That said, most SAC can be activated by inducers of membrane curvature. The lectin LecA is a virulence factor of Pseudomonas aeruginosa and essential for P. aeruginosa-induced membrane curvature, resulting in formation of endocytic structures and bacterial cell invasion. We investigate whether LecA modulates SAC activity. TREK-1 and Piezo1 have been selected, as they are widely expressed in the body, including cardiac tissue, and they are “canonical representatives” for the potassium selective and the cation non-selective SAC families, respectively. Live cell confocal microscopy and electron tomographic imaging were used to follow binding dynamics of LecA, and to track changes in cell morphology and membrane topology in human embryonic kidney (HEK) cells and in giant unilamellar vesicles (GUV). HEK cells were further transfected with human TREK-1 or Piezo1 constructs, and ion channel activity was recorded using the patch-clamp technique. Finally, freshly isolated cardiac cells were used for studies into cell type dependency of LecA binding. LecA (500 nM) binds within seconds to the surface of HEK cells, with highest concentration at cell-cell contact sites. Local membrane invaginations are detected in the presence of LecA, both in the plasma membrane of cells (by 17 min of LecA exposure) as well as in GUV. In HEK cells, LecA sensitizes TREK-1, but not Piezo1, to voltage and mechanical stimulation. In freshly isolated cardiac cells, LecA binds to non-myocytes, but not to ventricular or atrial cardiomyocytes. This cell type specific lack of binding is observed across cardiomyocytes from mouse, rabbit, pig, and human. Our results suggest that LecA may serve as a pharmacological tool to study SAC in a cell type-preferential manner. This could aid tissue-based research into the roles of SAC in cardiac non-myocytes.
Collapse
Affiliation(s)
- Elisa Darkow
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josef Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Winfried Römer
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Ma R, Lewis A. Spadin Selectively Antagonizes Arachidonic Acid Activation of TREK-1 Channels. Front Pharmacol 2020; 11:434. [PMID: 32317978 PMCID: PMC7154116 DOI: 10.3389/fphar.2020.00434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
TREK-1 channel activity is a critical regulator of neuronal, cardiac, and smooth muscle physiology and pathology. The antidepressant peptide, spadin, has been proposed to be a TREK-1-specific blocker. Here we sought to examine the mechanism of action underlying spadin inhibition of TREK-1 channels. Heterologous expression in Xenopus laevis oocytes and electrophysiological analysis using two-electrode voltage clamp in standard bath solutions was used to characterize the pharmacological profile of wild-type and mutant murine TREK-1 and TREK-2 channels using previously established human K2P activators; arachidonic acid (AA), cis-4,7,10,13,16,19-docosahexaenoic acid (DHA), BL-1249, and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC) and inhibitors; spadin and barium (Ba2+). Mouse TREK-1 and TREK-2 channel currents were both significantly increased by AA, BL-1249, and CDC, similar to their human homologs. Under basal conditions, both TREK-1 and TREK-2 currents were insensitive to application of spadin, but could be blocked by Ba2+. Spadin did not significantly inhibit either TREK-1 or TREK-2 currents either chemically activated by AA, BL-1249, or CDC, or structurally activated via a gating mutation. However, pre-exposure to spadin significantly perturbed the subsequent activation of TREK-1 currents by AA, but not TREK-2. Furthermore, spadin was unable to prevent activation of TREK-1 by BL-1249, CDC, or the related bioactive lipid, DHA. Spadin specifically antagonizes the activation of TREK-1 channels by AA, likely via an allosteric mechanism. Lack of intrinsic activity may explain the absence of clinical side effects during antidepressant therapy.
Collapse
Affiliation(s)
- Ruolin Ma
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anthony Lewis
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
26
|
Guo F, Sun Y, Wang X, Wang H, Wang J, Gong T, Chen X, Zhang P, Su L, Fu G, Su J, Yang S, Lai R, Jiang C, Liang P. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ Res 2019; 124:66-78. [PMID: 30582453 DOI: 10.1161/circresaha.118.313518] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Short QT syndrome (SQT) is a rare but arrhythmogenic disorder featured by shortened ventricular repolarization and a propensity toward life-threatening ventricular arrhythmias and sudden cardiac death. OBJECTIVE This study aimed to investigate the single-cell mechanism of SQT using patient-specific and gene-corrected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS AND RESULTS One SQT patient carrying missense mutation T618I in potassium voltage-gated channel subfamily H member 2 ( KCNH2) was recruited as well as 2 healthy control subjects in this study. Control and SQT patient-specific iPSCs were generated from skin fibroblasts using nonintegrated Sendai virus. The KCNH2 T618I mutation was corrected by genome editing in SQT iPSC lines to generate isogenic controls. All iPSCs were differentiated into iPSC-CMs using monolayer-based differentiation protocol. SQT iPSC-CMs exhibited abnormal action potential phenotype featured by shortened action potential duration and increased beat-beat interval variability, when compared with control and gene-corrected iPSC-CMs. Furthermore, SQT iPSC-CMs showed KCNH2 gain-of-function with increased rapid delayed rectifying potassium current (IKr) density and enhanced membrane expression. Gene expression profiling of iPSC-CMs exhibited a differential cardiac ion-channel gene expression profile of SQT. Moreover, QTc of SQT patient and action potential durations of SQT iPSC-CMs were both normalized by quinidine, indicating that quinidine is beneficial to KCNH2 T618I of SQT. Importantly, shortened action potential duration phenotype observed in SQT iPSC-CMs was effectively rescued by a short-peptide scorpion toxin BmKKx2 with a mechanism of targeting KCNH2. CONCLUSIONS We demonstrate that patient-specific and gene-corrected iPSC-CMs are able to recapitulate single-cell phenotype of SQT, which is caused by the gain-of-function mutation KCNH2 T618I. These findings will help elucidate the mechanisms underlying SQT and discover therapeutic drugs for treating the disease by using peptide toxins as lead compounds.
Collapse
Affiliation(s)
- Fengfeng Guo
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxun Sun
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Hao Wang
- Department of Prenatal Diagnosis (Screening) Center, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), China (H.W.)
| | - Jue Wang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Tingyu Gong
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venerology (X.C.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgeng Hospital, China (P.Z.)
| | - Lan Su
- Cardiovascular Medicine Department, The First Affiliated Hospital of Wenzhou Medical University, China (L.S.)
| | - Guosheng Fu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| | - Jun Su
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.).,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences (S.Y., L.R.), Kunming Institute of Zoology, China.,Key Laboratory of Bioactive Peptides of Yunnan Province (S.Y., L.R.), Kunming Institute of Zoology, China
| | - Chenyang Jiang
- Department of Cardiology (Y.S., C.J.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liang
- From the Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital (F.G., X.W., J.W., T.G., J.S., P.L.), Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China (F.G., X.W., J.W., J.S., P.L.)
| |
Collapse
|
27
|
McRae C, Kapoor A, Kanda P, Hibbert B, Davis DR. Systematic review of biological therapies for atrial fibrillation. Heart Rhythm 2019; 16:1399-1407. [DOI: 10.1016/j.hrthm.2019.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/09/2022]
|
28
|
Staudacher I, Seehausen S, Illg C, Lugenbiel P, Schweizer PA, Katus HA, Thomas D. Cardiac K2P13.1 (THIK-1) two-pore-domain K+ channels: Pharmacological regulation and remodeling in atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:128-138. [DOI: 10.1016/j.pbiomolbio.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023]
|
29
|
Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249. Bioorg Med Chem Lett 2019; 29:1601-1604. [DOI: 10.1016/j.bmcl.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 11/20/2022]
|
30
|
Staudacher I, Illg C, Gierten J, Seehausen S, Schweizer PA, Katus HA, Thomas D. Identification and functional characterization of zebrafish K 2P 17.1 (TASK-4, TALK-2) two-pore-domain K + channels. Eur J Pharmacol 2018; 831:94-102. [DOI: 10.1016/j.ejphar.2018.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022]
|
31
|
Wiedmann F, Schulte JS, Gomes B, Zafeiriou MP, Ratte A, Rathjens F, Fehrmann E, Scholz B, Voigt N, Müller FU, Thomas D, Katus HA, Schmidt C. Atrial fibrillation and heart failure-associated remodeling of two-pore-domain potassium (K2P) channels in murine disease models: focus on TASK-1. Basic Res Cardiol 2018; 113:27. [DOI: 10.1007/s00395-018-0687-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 12/27/2022]
|
32
|
Batul SA, Gopinathannair R. Atrial Fibrillation in Heart Failure: a Therapeutic Challenge of Our Times. Korean Circ J 2017; 47:644-662. [PMID: 28955382 PMCID: PMC5614940 DOI: 10.4070/kcj.2017.0040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 11/11/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are growing cardiovascular disease epidemics worldwide. There has been an exponential increase in the prevalence of AF and HF correlating with an increased burden of cardiac risk factors and improved survival rates in patients with structural heart disease. AF is associated with adverse prognostic outcomes in HF and is most evident in mild-to-moderate left ventricular (LV) dysfunction where the loss of "atrial kick" translates into poorer quality of life and increased mortality. In the absence of underlying structural heart disease, arrhythmia can independently contribute to the development of cardiomyopathy. Together, these 2 conditions carry a high risk of thromboembolism due to stasis, inflammation and cellular dysfunction. Stroke prevention with oral anticoagulation (OAC) remains a mainstay of treatment. Pharmacologic rate and rhythm control remain limited by variable efficacy, intolerance and adverse reactions. Catheter ablation for AF has resulted in a paradigm shift with evidence indicating superiority over medical therapy. While its therapeutic success is high for paroxysmal AF, it remains suboptimal in persistent AF. A better mechanistic understanding of AF as well as innovations in ablation technology may improve patient outcomes in the future. Refractory cases may benefit from atrioventricular junction ablation and biventricular pacing. The value of risk factor modification, especially with regard to obesity, sleep apnea, hypertension and diabetes, cannot be emphasized enough. Close interdisciplinary collaboration between HF specialists and electrophysiologists is an essential component of good long-term outcomes in this challenging population.
Collapse
Affiliation(s)
- Syeda Atiqa Batul
- Division of Cardiology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY USA
| | | |
Collapse
|
33
|
Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 2017; 26:897-907. [PMID: 28691539 PMCID: PMC6324729 DOI: 10.1080/13543784.2017.1353601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although there have been important technological advances for the treatment of cardiac arrhythmias (e.g., catheter ablation technology), antiarrhythmic drugs (AADs) remain the cornerstone therapy for the majority of patients with arrhythmias. Most of the currently available AADs were coincidental findings and did not result from a systematic development process based on known arrhythmogenic mechanisms and specific targets. During the last 20 years, our understanding of cardiac electrophysiology and fundamental arrhythmia mechanisms has increased significantly, resulting in the identification of new potential targets for mechanism-based antiarrhythmic therapy. Areas covered: Here, we review the state-of-the-art in arrhythmogenic mechanisms and AAD therapy. Thereafter, we focus on a number of antiarrhythmic targets that have received significant attention recently: atrial-specific K+-channels, the late Na+-current, the cardiac ryanodine-receptor channel type-2, and the small-conductance Ca2+-activated K+-channel. We highlight for each of these targets available antiarrhythmic agents and the evidence for their antiarrhythmic effect in animal models and early clinical development. Expert opinion: Targeting AADs to specific subgroups of well-phenotyped patients is likely necessary to detect improved outcomes that may be obscured in the population at large. In addition, specific combinations of selective AADs may have synergistic effects and may enable a mechanism-based tailored antiarrhythmic therapy.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Atrial myofibroblast activation and connective tissue formation in a porcine model of atrial fibrillation and reduced left ventricular function. Life Sci 2017; 181:1-8. [DOI: 10.1016/j.lfs.2017.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 12/31/2022]
|
35
|
Arora R. Gene Therapy for Atrial Fibrillation in Heart Failure. Clin Pharmacol Ther 2017; 102:200-202. [PMID: 28548218 DOI: 10.1002/cpt.717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and a major cause of morbidity and mortality in an aging population. Unfortunately, current treatments for AF are suboptimal, in large part because the molecular mechanisms underlying AF are not well understood. Recent advances in our understanding of the AF disease state have led to the preclinical development of gene-based therapies that are targeted to key molecular mechanisms involved in the genesis and maintenance of AF.
Collapse
Affiliation(s)
- R Arora
- Department of Experimental Cardiac Electrophysiology, Northwestern University, Feinberg School of Medicine, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
36
|
Schmidt C, Wiedmann F, Kallenberger SM, Ratte A, Schulte JS, Scholz B, Müller FU, Voigt N, Zafeiriou MP, Ehrlich JR, Tochtermann U, Veres G, Ruhparwar A, Karck M, Katus HA, Thomas D. Stretch-activated two-pore-domain (K 2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:233-243. [PMID: 28526353 DOI: 10.1016/j.pbiomolbio.2017.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022]
Abstract
Two-pore-domain potassium (K2P) channels modulate cellular excitability. The significance of stretch-activated cardiac K2P channels (K2P2.1, TREK-1, KCNK2; K2P4.1, TRAAK, KCNK4; K2P10.1, TREK-2, KCNK10) in heart disease has not been elucidated in detail. The aim of this work was to assess expression and remodeling of mechanosensitive K2P channels in atrial fibrillation (AF) and heart failure (HF) patients in comparison to murine models. Cardiac K2P channel levels were quantified in atrial (A) and ventricular (V) tissue obtained from patients undergoing open heart surgery. In addition, control mice and mouse models of AF (cAMP-response element modulator (CREM)-IbΔC-X transgenic animals) or HF (cardiac dysfunction induced by transverse aortic constriction, TAC) were employed. Human and murine KCNK2 displayed highest mRNA abundance among mechanosensitive members of the K2P channel family (V > A). Disease-associated K2P2.1 remodeling was studied in detail. In patients with impaired left ventricular function, atrial KCNK2 (K2P2.1) mRNA and protein expression was significantly reduced. In AF subjects, downregulation of atrial and ventricular KCNK2 (K2P2.1) mRNA and protein levels was observed. AF-associated suppression of atrial Kcnk2 (K2P2.1) mRNA and protein was recapitulated in CREM-transgenic mice. Ventricular Kcnk2 expression was not significantly altered in mouse models of disease. In conclusion, mechanosensitive K2P2.1 and K2P10.1 K+ channels are expressed throughout the heart. HF- and AF-associated downregulation of KCNK2 (K2P2.1) mRNA and protein levels suggest a mechanistic contribution to cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg / Mannheim, University of Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg / Mannheim, University of Heidelberg, Germany
| | - Stefan M Kallenberger
- Department for Bioinformatics and Functional Genomics, Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Antonius Ratte
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Jan S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Beatrix Scholz
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Maria-Patapia Zafeiriou
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Joachim R Ehrlich
- Department of Cardiology, Internal Medicine III, Goethe University, Frankfurt, Germany; Department of Cardiology, St. Josefs-Hospital, Wiesbaden, Germany
| | - Ursula Tochtermann
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Veres
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg / Mannheim, University of Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg / Mannheim, University of Heidelberg, Germany.
| |
Collapse
|