1
|
Kwiatkowska M, Mickiewicz A, Krzesińska A, Kuchta A, Jankowski M, Gruchała M, Fijałkowski M. The Role of Paraoxonase-1 Activity, Apolipoprotein B Levels, and Apolipoprotein B/Apolipoprotein A-I Ratio as Risk Markers for Aortic Stenosis in Patients with a Bicuspid Aortic Valve. Antioxidants (Basel) 2025; 14:167. [PMID: 40002354 PMCID: PMC11851860 DOI: 10.3390/antiox14020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
The bicuspid aortic valve (BAV) is commonly associated with the early degeneration of the aortic valve. Up to 45% of BAV patients over the age of 50 develop aortic stenosis (AS). Although published data indicate a robust interplay between lipids and calcific AS in tricuspid aortic valve patients, the studies on the BAV population are lacking. We aimed to evaluate the association between selected lipid markers and the occurrence of AS in BAV patients. Methods: The study included 76 adults (21 female) with a BAV diagnosed by echocardiography, divided by age and AS diagnosis. Biochemical parameters concentrations in serum were measured: high density lipoprotein cholesterol (HDL-C) levels by standard enzymatic colorimetric tests, low density lipoprotein cholesterol (LDL-C) levels by the Friedewald formula, apolipoprotein A-I (Apo AI) and apolipoprotein B (Apo B) serum concentration by the nephelometric method, and paraoxonase-1 activity (PON-1 ASE) and arylesterase activity (PON-1 ARE) based on paraoxon and phenyl acetate hydrolysis. Results: A total of 54 patients (15 female) were more than 45 years old and 22 (6 female) were 45 or less years old. BAV patients with AS aged ≤45 had higher levels of Apo B, compared to those without AS [110.5 (102-132) vs. 95.6 (77-101) mg/d; p 0.044]. Similarly, Apo B/Apo AI ratio was higher in BAV patients with AS aged ≤45, compared to those without AS [(0.8 (0.7-1) vs. 0.6 (0.5-0.7); p 0.029]. In the group aged ≤45, Apo B showed a positive correlation with the aortic valve peak transvalvular velocity (AV Vmax) measurement (R Spearman 0.6, p 0.004). We found also that, among young BAV patients, those with AS had a lower level of PON-1 ARE compared to the cohort without AS [63.4 (52-80) vs. 85.3 (70-102); p 0.012]. We did not find any differences in lipid parameters in patients aged >45. Conclusions The metabolic link between Apo B level and Apo B/AI ratio with AS presence in BAV patients under 45 years of age suggests a significant impact of these parameters on the earlier development of AS in the BAV population. Molecules associated with high density lipoprotein and its antioxidant function, such as PON1, are valuable markers for AS development, compared to HDL-C and LDL-C levels.
Collapse
Affiliation(s)
- Maria Kwiatkowska
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (M.K.); (M.G.); (M.F.)
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (M.K.); (M.G.); (M.F.)
| | - Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (A.K.); (M.J.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (A.K.); (M.J.)
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (A.K.); (A.K.); (M.J.)
| | - Marcin Gruchała
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (M.K.); (M.G.); (M.F.)
| | - Marcin Fijałkowski
- 1st Department of Cardiology, Medical University of Gdańsk, 80-211 Gdańsk, Poland; (M.K.); (M.G.); (M.F.)
| |
Collapse
|
2
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
3
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
4
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
5
|
Tian Y, Song H, Qin W, Ding Z, Zhang Y, Shan W, Jin D. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol 2020; 11:897. [PMID: 32848850 PMCID: PMC7424023 DOI: 10.3389/fphys.2020.00897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
In this study, we analyzed the role of mammalian STE20-like protein kinase 2 (Mst2), a serine-threonine protein kinase, in Lipopolysaccharides (LPS)-mediated inflammation and apoptosis in the H9C2 cardiomyocytes. Mst2 mRNA and protein levels were significantly upregulated in the LPS-treated H9C2 cardiomyocytes. LPS treatment induced expression of IL-2, IL-8, and MMP9 mRNA and proteins in the H9C2 cardiomyocytes, and this was accompanied by increased caspase-3/9 mediating H9C2 cardiomyocyte apoptosis. LPS treatment also increased mitochondrial reactive oxygen species (ROS) and the levels of antioxidant enzymes, such as GSH, SOD, and GPX, in the H9C2 cardiomyocytes. The LPS-treated H9C2 cardiomyocytes showed lower cellular ATP levels and mitochondrial state-3/4 respiration but increased mitochondrial fragmentation, including upregulation of the mitochondrial fission genes Drp1, Mff, and Fis1. LPS-induced inflammation, mitochondrial ROS, mitochondrial fission, and apoptosis were all significantly suppressed by pre-treating the H9C2 cardiomyocytes with the Mst2 inhibitor, XMU-MP1. However, the beneficial effects of Mst2 inhibition by XMU-MP1 were abolished by carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), a potent activator of mitochondrial fission. These findings demonstrate that Mst2 mediates LPS-induced cardiomyocyte inflammation and apoptosis by increasing mitochondrial fission.
Collapse
Affiliation(s)
- Yanan Tian
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Haijiu Song
- The First Department of Medicine, Chengde City Hospital of traditional Chinese Medicine, Chengde, China
| | - Wei Qin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Zhenjiang Ding
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ying Zhang
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Weichao Shan
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Dapeng Jin
- Department of Cardiology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
6
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Hu C, Lu K, Liu W. Exendin-4 attenuates inflammation-mediated endothelial cell apoptosis in varicose veins through inhibiting the MAPK-JNK signaling pathway. J Recept Signal Transduct Res 2020; 40:464-470. [PMID: 32338116 DOI: 10.1080/10799893.2020.1756326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Inflammation response has been found to be associated with endothelial cell death in the progression of varicose veins. Exendin-4 is able to reduce inflammation and thus attenuate cell apoptosis.Aim: The aim of our study is to explore the influence of Exendin-4 on LPS-treated endothelial cells.Methods: Cells were treated with LPS. Exendin-4 was added into the medium of cells. Western blots, qPCR, and ELISA were used to analyze the role of Exendin-4 in LPS-mediated cell death.Results: We found that LPS treatment caused significantly cell death. Whereas this trend could be attenuated by Exendin-4. After treatment with Exendin-4, inflammation factors upregulation and oxidative stress activation were significantly repressed, an effect that was followed by a drop in the levels of glucose production and lactic acid generation. At the molecular levels, Exendin-4 treatment inhibited the activity of MAPK-JNK signaling pathway in the presence of LPS treatment.Conclusions: LPS causes cell apoptosis through inducing inflammation response, oxidative stress and energy stress. Exendin-4 treatment enhances cell survival, reduces inflammation, and improves energy stress through inhibiting the MAPK-JNK signaling pathway.
Collapse
Affiliation(s)
- Changfu Hu
- Shenzhen University General Hospital, Shenzhen, China
| | - Kai Lu
- Daqing Oilfield General Hospital, Daqing, China
| | - Weili Liu
- Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
8
|
Xin T, Lu C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging (Albany NY) 2020; 12:4474-4488. [PMID: 32155590 PMCID: PMC7093202 DOI: 10.18632/aging.102899] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Myocardial infarction is characterized by sudden ischemia and cardiomyocyte death. Mitochondria have critical roles in regulating cardiomyocyte viability and can sustain damage under ischemic conditions. Mitophagy is a mechanism by which damaged mitochondria are removed by autophagy to maintain mitochondrial structure and function. We investigated the role of the dynamin-like GTPase optic atrophy 1 (Opa1) in mitophagy following myocardial infarction. Opa1 expression was downregulated in infarcted hearts in vivo and in hypoxia-treated cardiomyocytes in vitro. We found that Opa1 overexpression protected cardiomyocytes against hypoxia-induced damage and enhanced cell viability by inducing mitophagy. Opa1-induced mitophagy was activated by treatment with irisin, which protected cardiomyocytes from further damage following myocardial infarction. Opa1 knockdown abolished the cardioprotective effects of irisin resulting in an enhanced inflammatory response, increased oxidative stress, and mitochondrial dysfunction in cardiomyocytes. Our data indicate that Opa1 plays an important role in maintaining cardiomyocyte viability and mitochondrial function following myocardial infarction by inducing mitophagy. Irisin can activate Opa1-induced mitophagy and protect against cardiomyocyte injury following myocardial infarction.
Collapse
Affiliation(s)
- Ting Xin
- The First Center Clinic College of Tianjin Medical University, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
9
|
Zhou D, Zhang M, Min L, Jiang K, Jiang Y. Cerebral ischemia-reperfusion is modulated by macrophage-stimulating 1 through the MAPK-ERK signaling pathway. J Cell Physiol 2020; 235:7067-7080. [PMID: 32017081 DOI: 10.1002/jcp.29603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 01/04/2023]
Abstract
Cerebral ischemia-reperfusion (IR) injury is associated with mitochondrial damage. Macrophage-stimulating 1 (MST1) reportedly stimulates mitochondrial apoptosis by suppressing BCL-2. We investigated whether MST1 promotes the progression of cerebral IR injury by inducing mitochondrial dysfunction in vivo and in vitro. Western blot analysis, quantitative polymerase chain reaction, immunofluorescence, and mitochondrial function assays were conducted in cells from wild-type and Mst1-knockout mice subjected to cerebral IR injury. MST1 expression in wild-type glial cells increased following cerebral IR injury. Cerebral IR injury reduced the mitochondrial membrane potential and mitochondrial metabolism in glial cells, while it enhanced mitochondrial reactive oxygen species generation and mitochondrial calcium levels in these cells. The deletion of Mst1 attenuated cerebral IR injury by improving mitochondrial function and reducing mitochondrial damage. The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was suppressed in wild-type glial cell upon cerebral IR injury but was reactivated in Mst1-knockout glial cell. Accordingly, blocking the MAPK/ERK pathway abolished the beneficial effects of Mst1 deletion during cerebral IR injury by inducing mitochondrial damage in glial cells. Our results suggest that cerebral IR injury is associated with MST1 upregulation in the brain, while the genetic ablation of Mst1 can attenuate mitochondrial damage and sustain brain function following cerebral IR injury.
Collapse
Affiliation(s)
- Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liu Min
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kaiyuan Jiang
- Department of Neurosurgery, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Ma G, Liu Y, Wang Y, Wen Z, Li X, Zhai H, Miao L, Luo J. Liraglutide reduces hyperglycemia-induced cardiomyocyte death through activating glucagon-like peptide 1 receptor and targeting AMPK pathway. J Recept Signal Transduct Res 2020; 40:133-140. [PMID: 32013667 DOI: 10.1080/10799893.2020.1719517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Hyperglycemia-mediated cardiomyocyte damage is associated with inflammation and AMPK inactivation.Aim: The aim of our study is to explore the protective effects exerted by liraglutide on AMPK pathway and glucagon-like peptide 1 receptor in diabetic cardiomyopathy.Methods: Cardiomyocytes were treated with high-glucose stress and cardiomyocyte viability was determined via (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide assay. Besides, LDH release, immunofluorescence, and qPCR were used to verify the influence of liraglutide on hyperglycemia-treated cardiomyocytes.Results: Hyperglycemia treatment caused inflammation response and oxidative stress were significantly elevated in cardiomyocytes. This alteration could be reversed by liraglutide. Besides, cell viability was reduced whereas apoptosis was increased after exposure to high glucose treatment. However, liraglutide treatment could attenuate apoptosis and reverse cell viability in cardiomyocyte. Further, we found that AMPK pathway was also activated and glucagon-like peptide 1 receptor expression was increased in response to liraglutide treatment.Conclusions: Liraglutide could attenuate hyperglycemia-mediated cardiomyocyte damage through reversing AMPK pathway and upregulating glucagon-like peptide 1 receptor.
Collapse
Affiliation(s)
- Guanqun Ma
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yingwu Liu
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Yu Wang
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Zhinan Wen
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Xin Li
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Hu Zhai
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Li Miao
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Jieying Luo
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China.,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.,Artificial Cell Engineering Technology Research Center, Tianjin, China.,Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| |
Collapse
|
11
|
Zhang Y, Zhang H, Shi W, Wang W. Mief1 augments thyroid cell dysfunction and apoptosis through inhibiting AMPK-PTEN signaling pathway. J Recept Signal Transduct Res 2020; 40:15-23. [PMID: 31960779 DOI: 10.1080/10799893.2020.1716799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Inflammation-mediated thyroid cell dysfunction and apoptosis increases the like-hood of hypothyroidism.Aim: Our aim in the present study is to explore the role of mitochondrial elongation factor 1 (Mief1) in thyroid cell dysfunction induced by TNFα.Materials and methods: Different doses of TNFα were used to incubate with thyroid cells in vitro. The survival rate, apoptotic index and proliferation capacity of thyroid cells were measured. Cellular energy metabolism and endoplasmic reticulum function related to protein synthesis were detected.Results: In response to TNFα treatment, the levels of Mief1 were increased, coinciding with a drop in the viability of thyroid cells in vitro. Loss of Mief1 attenuates TNFα-induced cell death through reducing the ratio of cell apoptosis. Further, we found that Mief1 deletion reversed cell energy metabolism and this effect was attributable to mitochondrial protection. Mief1 knockdown sustained mitochondrial membrane potential and reduced mitochondrial ROS overproduction. In addition, Mief1 knockdown also reduced endoplasmic reticulum stress, as evidenced by decreased levels of Chop and Caspase-12. Finally, our data verified that TNFα treatment inhibited the activity of AMPK-PTEN pathway whereas Mief1 deletion reversed the activity of AMPK and thus promoted the upregulation of PTEN. However, inhibition of AMPK-PTEN pathways could abolish the beneficial effects exerted by Mief1 deletion on thyroid cells damage and dysfunction.Conclusions: Altogether, our data indicate that immune abnormality-mediated thyroid cell dysfunction and death are alleviated by Mief1 deletion possible driven through reversing the activity of AMPK-PTEN pathways.
Collapse
Affiliation(s)
- Yonglan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, Tianjin, People's Republic of China
| | - Wenjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| |
Collapse
|
12
|
Shang X, Zhang Y, Xu J, Li M, Wang X, Yu R. SRV2 promotes mitochondrial fission and Mst1-Drp1 signaling in LPS-induced septic cardiomyopathy. Aging (Albany NY) 2020; 12:1417-1432. [PMID: 31951593 PMCID: PMC7053598 DOI: 10.18632/aging.102691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial fission is associated with cardiomyocyte death and myocardial depression, and suppressor of ras val-2 (SRV2) is a newly discovered pro-fission protein. In this study, we examined the mechanisms of SRV2-mediated mitochondrial fission in septic cardiomyopathy. Western blotting, ELISA, and immunofluorescence were used to evaluate mitochondrial function, oxidative balance, energy metabolism and caspase-related death, and siRNA and adenoviruses were used to perform loss- and gain-of-function assays. Our results demonstrated that increased SRV2 expression promotes, while SRV2 knockdown attenuates, cardiomyocyte death in LPS-induced septic cardiomyopathy. Mechanistically, SRV2 activation promoted mitochondrial fission and physiological abnormalities by upregulating oxidative injury, ATP depletion, and caspase-9-related apoptosis. Our results also demonstrated that SRV2 promotes mitochondrial fission via a Mst1-Drp1 axis. SRV2 knockdown decreased Mst1 and Drp1 levels, while Mst1 overexpression abolished the mitochondrial protection and cardiomyocyte survival-promoting effects of SRV2 knockdown. SRV2 is thus a key novel promotor of mitochondrial fission and Mst1-Drp1 axis activity in septic cardiomyopathy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
13
|
Zhang X, Luo S, Wang M, Shi GP. Cysteinyl cathepsins in cardiovascular diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140360. [PMID: 31926332 DOI: 10.1016/j.bbapap.2020.140360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
Cysteinyl cathepsins are lysosomal/endosomal proteases that mediate bulk protein degradation in these intracellular acidic compartments. Yet, studies indicate that these proteases also appear in the nucleus, nuclear membrane, cytosol, plasma membrane, and extracellular space. Patients with cardiovascular diseases (CVD) show increased levels of cathepsins in the heart, aorta, and plasma. Plasma cathepsins often serve as biomarkers or risk factors of CVD. In aortic diseases, such as atherosclerosis and abdominal aneurysms, cathepsins play pathogenic roles, but many of the same cathepsins are cardioprotective in hypertensive, hypertrophic, and infarcted hearts. During the development of CVD, cathepsins are regulated by inflammatory cytokines, growth factors, hypertensive stimuli, oxidative stress, and many others. Cathepsin activities in inflammatory molecule activation, immunity, cell migration, cholesterol metabolism, neovascularization, cell death, cell signaling, and tissue fibrosis all contribute to CVD and are reviewed in this article in memory of Dr. Nobuhiko Katunuma for his contribution to the field.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Songyuan Luo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Minjie Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
14
|
Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury. Biomolecules 2020; 10:biom10010085. [PMID: 31948043 PMCID: PMC7023463 DOI: 10.3390/biom10010085] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key regulators of cell fate through controlling ATP generation and releasing pro-apoptotic factors. Cardiac ischemia/reperfusion (I/R) injury to the coronary microcirculation has manifestations ranging in severity from reversible edema to interstitial hemorrhage. A number of mechanisms have been proposed to explain the cardiac microvascular I/R injury including edema, impaired vasomotion, coronary microembolization, and capillary destruction. In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. It is clear that abnormal mitochondrial signatures, including mitochondrial oxidative stress, mitochondrial fission, mitochondrial fusion, and mitophagy, play a substantial role in endothelial cell function. While the pathogenic role of each of these mitochondrial alterations in the endothelial cells I/R injury remains complex, profiling of mitochondrial oxidative stress and mitochondrial dynamics in endothelial cell dysfunction may offer promising potential targets in the search for novel diagnostics and therapeutics in cardiac microvascular I/R injury. The objective of this review is to discuss the role of mitochondrial oxidative stress on cardiac microvascular endothelial cells dysfunction. Mitochondrial dynamics, including mitochondrial fission and fusion, are critically discussed to understand their roles in endothelial cell survival. Finally, mitophagy, as a degradative mechanism for damaged mitochondria, is summarized to figure out its contribution to the progression of microvascular I/R injury.
Collapse
|
15
|
Yang Y, Gong Z, Wang Z. Yes-associated protein reduces neuroinflammation through upregulation of Sirt3 and inhibition of JNK signaling pathway. J Recept Signal Transduct Res 2019; 39:479-487. [PMID: 31858862 DOI: 10.1080/10799893.2019.1705339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: Neuroinflammation is linked to a series of neurodegenerative diseases through the unknown mechanisms.Aim: The aim of this study was to investigate the role of Yes-associated protein (Yap) in the regulation of neuroinflammation.Methods: BV-2 neuroglia cells were treated with TNFα in vitro. Then, western blots, qPCR, immunofluorescence, and ELISA were used to verify the influence of Yap in BV-2 cells neuroinflammation response.Results: After exposure to TNFα, viability of BV-2 cells decreased whereas apoptosis index was increased. Of note, Yap expression in BV-2 cells was significantly reduced, when compared to the normal cells. Interestingly, adenovirus-induced Yap overexpression was capable to reverse cell viability and thus reduce apoptotic index in TNFα-treated BV-2 cells. Molecular investigation demonstrated that Yap overexpression was linked to Sirt3 upregulation. Increased Sirt3 reduced endoplasmic reticulum (ER) stress, attenuated mitochondrial damage, and blocked JNK pro-apoptotic pathway. Interestingly, loss of Sirt3 abolished the protective effects induced by Yap overexpression in TNFα-treated BV-2 cells.Conclusions: Altogether, our results demonstrated that neuroinflammation could be caused by Yap downregulation, possible driven through Sirt3 inhibition and JNK activation. However, overexpression of Yap could protect BV-2 cells against TNFα-mediated apoptosis through modulating Sirt3-JNK signaling pathways.
Collapse
Affiliation(s)
- Yang Yang
- Tianjin First Central Hospital, Tianjin, P.R. China
| | | | - Zhiyun Wang
- Tianjin First Central Hospital, Tianjin, P.R. China
| |
Collapse
|
16
|
Tian Y, Lv W, Lu C, Zhao X, Zhang C, Song H. LATS2 promotes cardiomyocyte H9C2 cells apoptosis via the Prx3-Mfn2-mitophagy pathways. J Recept Signal Transduct Res 2019; 39:470-478. [PMID: 31829064 DOI: 10.1080/10799893.2019.1701031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: The pathogenesis of cardiomyocyte death is closely associated with mitochondrial homeostasis via poorly understood mechanisms.Objective: The aim of our study is to explore the contribution of large tumor suppressor kinase 2 (LATS2) to the apoptosis of cardiomyocyte H9C2 cells.Materials and Methods: Adenovirus-mediated LATS2 overexpression was carried out in H9C2 cells. The cell viability and apoptosis rate were measured via an MTT assay, TUNEL staining, western blotting, an ELISA, and an LDH release assay. Mitophagy was quantified using immunofluorescence and western blotting.Results: The overexpression of LATS2 in H9C2 cells drastically promoted cell death. Molecular investigations showed that LATS2 overexpression was associated with mitochondrial injury, as evidenced by increased mitochondrial ROS production, reduced antioxidant factor levels, increased cyt-c liberation into the nucleus and activated mitochondrial caspase-9-dependent apoptotic pathway activity. Furthermore, our results demonstrated that LATS2-mediated mitochondrial malfunction by repressing mitophagy and that the reactivation of mitophagy could sustain mitochondrial integrity and homeostasis in response to LATS2 overexpression. Furthermore, we found that LATS2 inhibited mitophagy by inactivating the Prx3-Mfn2 axis. The reactivation of Prx3-Mfn2 pathways abrogated the LATS2-mediated inhibition of mitochondrial apoptosis in H9C2 cells.Conclusions: The overexpression of LATS2 induces mitochondrial stress by repressing protective mitophagy in a manner dependent on Prx3-Mfn2 pathways, thus reducing the survival of H9C2 cells.
Collapse
Affiliation(s)
| | - Wei Lv
- Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Tianjin First Central Hospital, Tianjin, China
| | | | - Chunguang Zhang
- North District Maternal and Child Health Family Planning Service Center, Qingdao, China
| | - Haoming Song
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|