1
|
Stötzel J, Warwick T, Tirunagari P, Brandes RP, Leisegang MS. The relevance of RNA-DNA interactions as regulators of physiological functions. Pflugers Arch 2025:10.1007/s00424-025-03091-7. [PMID: 40397186 DOI: 10.1007/s00424-025-03091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/10/2025] [Accepted: 05/03/2025] [Indexed: 05/22/2025]
Abstract
RNA-DNA interactions are fundamental to cellular physiology, playing critical roles in genome integrity, gene expression, and stress responses. This review highlights the diverse structures of RNA-DNA hybrids, including R-loops, RNA-DNA triplexes, and RNA-DNA hybrid G-quadruplexes (hG4s) and their relevance in physiology. R-loops are formed during transcription and replication, which regulate gene expression and chromatin dynamics but can also threaten genome stability. RNA-DNA triplexes, often formed by long noncoding RNAs (lncRNAs) such as FENDRR and MEG3, recruit chromatin modifiers like Polycomb repressive complex 2 to modulate gene expression, influencing organogenesis and cell specification. hG4s, formed by guanine-rich sequences in RNA and DNA, regulate transcription termination and telomere stability. Through this, hG4s can affect gene suppression and replication regulation. RNA-DNA hybrids are tightly regulated by helicases, RNase H enzymes, and topoisomerases, with altered regulation linked to genomic instability and disease. This review discusses the complexity of RNA-DNA interactions and their recently identified contributions to cellular physiology.
Collapse
Affiliation(s)
- Julia Stötzel
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | | | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany.
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany.
| |
Collapse
|
2
|
Durrington P, Soran H. Paraoxonase 1: evolution of the enzyme and of its role in protecting against atherosclerosis. Curr Opin Lipidol 2024; 35:171-178. [PMID: 38887979 PMCID: PMC11224571 DOI: 10.1097/mol.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW To review the discoveries which led to the concept that serum paraoxonase 1 (PON1) is inversely related to atherosclerotic cardiovascular disease (ASCVD) incidence, how this association came to be regarded as causal and how such a role might have evolved. RECENT FINDINGS Animal models suggest a causal link between PON1 present on HDL and atherosclerosis. Serum PON1 activity predicts ASCVD with a similar reliability to HDL cholesterol, but at the extremes of high and low HDL cholesterol, there is discordance with PON1 being potentially more accurate. The paraoxonase gene family has its origins in the earliest life forms. Its greatest hydrolytic activity is towards lactones and organophosphates, both of which can be generated in the natural environment. It is active towards a wide range of substrates and thus its conservation may have resulted from improved survival of species facing a variety of evolutionary challenges. SUMMARY Protection against ASCVD is likely to be the consequence of some promiscuous activity of PON1, but nonetheless has the potential for exploitation to improve risk prediction and prevention of ASCVD.
Collapse
Affiliation(s)
- Paul Durrington
- Faculty of Biology, Medicine and Health, Cardiovascular Research Group, University of Manchester
| | - Handrean Soran
- NIHR/Wellcome Trust Clinical Research Facility & Department of Diabetes, Metabolism and Endocrinology, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
3
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
4
|
Durrington PN, Bashir B, Soran H. Paraoxonase 1 and atherosclerosis. Front Cardiovasc Med 2023; 10:1065967. [PMID: 36873390 PMCID: PMC9977831 DOI: 10.3389/fcvm.2023.1065967] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Paraoxonase 1 (PON1), residing almost exclusively on HDL, was discovered because of its hydrolytic activity towards organophosphates. Subsequently, it was also found to hydrolyse a wide range of substrates, including lactones and lipid hydroperoxides. PON1 is critical for the capacity of HDL to protect LDL and outer cell membranes against harmful oxidative modification, but this activity depends on its location within the hydrophobic lipid domains of HDL. It does not prevent conjugated diene formation, but directs lipid peroxidation products derived from these to become harmless carboxylic acids rather than aldehydes which might adduct to apolipoprotein B. Serum PON1 is inversely related to the incidence of new atherosclerotic cardiovascular disease (ASCVD) events, particularly in diabetes and established ASCVD. Its serum activity is frequently discordant with that of HDL cholesterol. PON1 activity is diminished in dyslipidaemia, diabetes, and inflammatory disease. Polymorphisms, most notably Q192R, can affect activity towards some substrates, but not towards phenyl acetate. Gene ablation or over-expression of human PON1 in rodent models is associated with increased and decreased atherosclerosis susceptibility respectively. PON1 antioxidant activity is enhanced by apolipoprotein AI and lecithin:cholesterol acyl transferase and diminished by apolipoprotein AII, serum amyloid A, and myeloperoxidase. PON1 loses this activity when separated from its lipid environment. Information about its structure has been obtained from water soluble mutants created by directed evolution. Such recombinant PON1 may, however, lose the capacity to hydrolyse non-polar substrates. Whilst nutrition and pre-existing lipid modifying drugs can influence PON1 activity there is a cogent need for more specific PON1-raising medication to be developed.
Collapse
Affiliation(s)
- Paul N Durrington
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Bilal Bashir
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Handrean Soran
- Cardiovascular Research Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Diabetes, Endocrinology and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
5
|
Kokot KE, Kneuer JM, John D, Rebs S, Möbius-Winkler MN, Erbe S, Müller M, Andritschke M, Gaul S, Sheikh BN, Haas J, Thiele H, Müller OJ, Hille S, Leuschner F, Dimmeler S, Streckfuss-Bömeke K, Meder B, Laufs U, Boeckel JN. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol 2022; 117:32. [PMID: 35737129 PMCID: PMC9226085 DOI: 10.1007/s00395-022-00940-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023]
Abstract
Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.
Collapse
Affiliation(s)
- Karoline E Kokot
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jasmin M Kneuer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Sabine Rebs
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | | | - Stephan Erbe
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Marion Müller
- Department of General and Interventional Cardiology/Angiology, Ruhr University of Bochum, Heart-and Diabetes Center North Rhine-Westphalia, Bad Oeynhausen, Germany
| | - Michael Andritschke
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Institute, Leipzig, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Florian Leuschner
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Theodor Stern Kai 7, Frankfurt, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, Versbacher-Str. 9, Würzburg, Germany
- Heartcenter - Clinic for Cardiology and Pneumology, University Medicine Goettingen, Robert-Koch-Str. 40, Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, Leipzig, Germany.
| |
Collapse
|
6
|
Schoger E, Lelek S, Panáková D, Zelarayán LC. Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Front Cardiovasc Med 2022; 8:783072. [PMID: 35097003 PMCID: PMC8795974 DOI: 10.3389/fcvm.2021.783072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Daniela Panáková
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
- *Correspondence: Laura Cecilia Zelarayán
| |
Collapse
|
7
|
Buchheister S, Bleich A. Health Monitoring of Laboratory Rodent Colonies-Talking about (R)evolution. Animals (Basel) 2021; 11:1410. [PMID: 34069175 PMCID: PMC8155880 DOI: 10.3390/ani11051410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023] Open
Abstract
The health monitoring of laboratory rodents is essential for ensuring animal health and standardization in biomedical research. Progress in housing, gnotobiotic derivation, and hygienic monitoring programs led to enormous improvement of the microbiological quality of laboratory animals. While traditional health monitoring and pathogen detection methods still serve as powerful tools for the diagnostics of common animal diseases, molecular methods develop rapidly and not only improve test sensitivities but also allow high throughput analyses of various sample types. Concurrently, to the progress in pathogen detection and elimination, the research community becomes increasingly aware of the striking influence of microbiome compositions in laboratory animals, affecting disease phenotypes and the scientific value of research data. As repeated re-derivation cycles and strict barrier husbandry of laboratory rodents resulted in a limited diversity of the animals' gut microbiome, future monitoring approaches will have to reform-aiming at enhancing the validity of animal experiments. This review will recapitulate common health monitoring concepts and, moreover, outline strategies and measures on coping with microbiome variation in order to increase reproducibility, replicability and generalizability.
Collapse
Affiliation(s)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| |
Collapse
|