1
|
Graham M, Klinge S. Multiscale homogenisation of diffusion in enzymatically-calcified hydrogels. J Mech Behav Biomed Mater 2024; 149:106244. [PMID: 37988844 DOI: 10.1016/j.jmbbm.2023.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Hydrogels are a promising class of material in biomedical and industrial applications, where both the mechanical and diffusion properties play an important role. The wide range of polymers that can be used and the different production methods allows these properties to be specifically tuned to a high degree for their application. Producing tough hydrogels with high stiffness has been a long-standing challenge that has recently been addressed by mineralisation methods. Those methods modify the hydrogel into one with a supporting mineral microstructure that is highly heterogeneous. This work investigates methods to determine the macroscopic diffusion behaviour of heterogeneous gels by a homogenisation method implemented in a finite element framework. This is applied to two recently developed materials by calcifying poly-dimethyl-acrylamide (PDMA) and polyacrylamide hydrogels (PAAm). The former has porous, spherical inclusions obstructing diffusion, while the latter has spherical pores enabling it. For both gels the unobstructed volume can be used as the primary parameter to tune the diffusivity. In PDMA the porosity of the obstructions is shown by multiscale analysis to give a strong, non-linear dependence of the diffusivity on the solute molecule radius. The framework is extended to other materials and comparisons are made to experimental works from the literature.
Collapse
Affiliation(s)
- Marc Graham
- Department Structural Mechanics and Analysis, TU Berlin, Str. des 17. Juni 135, Berlin, 10623, Germany.
| | - Sandra Klinge
- Department Structural Mechanics and Analysis, TU Berlin, Str. des 17. Juni 135, Berlin, 10623, Germany
| |
Collapse
|
2
|
Palchoudhury S, Das P, Ghasemi A, Tareq SM, Sengupta S, Han J, Maglosky S, Almanea F, Jones M, Cox C, Rao V. A Novel Experimental Approach to Understand the Transport of Nanodrugs. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5485. [PMID: 37570188 PMCID: PMC10419439 DOI: 10.3390/ma16155485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Nanoparticle-based drugs offer attractive advantages like targeted delivery to the diseased site and size and shape-controlled properties. Therefore, understanding the particulate flow of the nanodrugs is important for effective delivery, accurate prediction of required dosage, and developing efficient drug delivery platforms for nanodrugs. In this study, the transport of nanodrugs including flow velocity and deposition is investigated using three model metal oxide nanodrugs of different sizes including iron oxide, zinc oxide, and combined Cu-Zn-Fe oxide synthesized via a modified polyol approach. The hydrodynamic size, size, morphology, chemical composition, crystal phase, and surface functional groups of the water-soluble nanodrugs were characterized via dynamic light scattering, transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray, X-ray diffraction, and fourier transform infrared spectroscopy, respectively. Two different biomimetic flow channels with customized surfaces are developed via 3D printing to experimentally monitor the velocity and deposition of the different nanodrugs. A diffusion dominated mechanism of flow is seen in size ranges 92 nm to 110 nm of the nanodrugs, from the experimental velocity and mass loss profiles. The flow velocity analysis also shows that the transport of nanodrugs is controlled by sedimentation processes in the larger size ranges of 110-302 nm. However, the combined overview from experimental mass loss and velocity trends indicates presence of both diffusive and sedimentation forces in the 110-302 nm size ranges. It is also discovered that the nanodrugs with higher positive surface charges are transported faster through the two test channels, which also leads to lower deposition of these nanodrugs on the walls of the flow channels. The results from this study will be valuable in realizing reliable and cost-effective in vitro experimental approaches that can support in vivo methods to predict the flow of new nanodrugs.
Collapse
Affiliation(s)
| | - Parnab Das
- Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Amirehsan Ghasemi
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, 444 Greve Hall, 821 Volunteer Blvd., Knoxville, TN 37996-3394, USA
| | - Syed Mohammed Tareq
- Civil and Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - Sohini Sengupta
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Jinchen Han
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Sarah Maglosky
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Fajer Almanea
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Madison Jones
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Collin Cox
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Venkateswar Rao
- Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
3
|
Rheological properties of crosslinked unentangled and entangled Poly(methyl acrylate) nanocomposite networks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020; 5:924-937. [PMID: 32637755 PMCID: PMC7330434 DOI: 10.1016/j.bioactmat.2020.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023] Open
Abstract
A variety of engineered nanoparticles, including lipid nanoparticles, polymer nanoparticles, gold nanoparticles, and biomimetic nanoparticles, have been studied as delivery vehicles for biomedical applications. When assessing the efficacy of a nanoparticle-based delivery system, in vitro testing with a model delivery system is crucial because it allows for real-time, in situ quantitative transport analysis, which is often difficult with in vivo animal models. The advent of tissue engineering has offered methods to create experimental models that can closely mimic the 3D microenvironment in the human body. This review paper overviews the types of nanoparticle vehicles, their application areas, and the design strategies to improve delivery efficiency, followed by the uses of engineered microtissues and methods of analysis. In particular, this review highlights studies on multicellular spheroids and other 3D tissue engineering approaches for cancer drug development. The use of bio-engineered tissues can potentially provide low-cost, high-throughput, and quantitative experimental platforms for the development of nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Chen Y, Ma R, Qian X, Zhang R, Huang X, Xu H, Zhou M, Liu J. Nanoparticle Mobility within Permanently Cross-Linked Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xifu Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Ningbo Detai Chemical Co., Ltd., Ningbo 315204, China
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Barteau KP, Ma K, Kohle FF, Gardinier TC, Beaucage PA, Gillilan RE, Wiesner U. Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles by Small-angle X-ray Scattering. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:643-657. [PMID: 30886456 PMCID: PMC6420223 DOI: 10.1021/acs.chemmater.8b04369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Small-angle X-ray scattering (SAXS) was performed on dispersions of ultrasmall (d < 10 nm) fluorescent organic-inorganic hybrid core-shell silica nanoparticles synthesized in aqueous solutions (C' dots) by using an oscillating flow cell to overcome beam induced particle degradation. Form factor analysis and fitting was used to determine the size and size dispersity of the internal silica core containing covalently encapsulated fluorophores. The structure of the organic poly(ethylene glycol) (PEG) shell was modelled as a monodisperse corona containing concentrated and semi-dilute regimes of decaying density and as a simple polydisperse shell to determine the bounds of dispersity in the overall hybrid particle. C' dots containing single growth step silica cores have dispersities of 0.19-0.21; growth of additional silica shells onto the core produces a thin, dense silica layer, and increases the dispersity to 0.22-0.23. Comparison to FCS and DLS measures of size shows good agreement with SAXS measured and modelled sizes and size dispersities. Finally, comparison of a set of same sized and purified particles demonstrates that SAXS is sensitive to the skewness of the gel permeation chromatography elugrams of the original as-made materials. These and other insights provided by quantitative SAXS assessments may become useful for generation of robust nanoparticle design criteria necessary for their successful and safe use, for example in nanomedicine and oncology applications.
Collapse
Affiliation(s)
- Katherine P. Barteau
- Department of Materials Science & Engineering, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| | - Kai Ma
- Department of Materials Science & Engineering, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| | - Ferdinand F.E. Kohle
- Department of Chemistry and Chemical Biology, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| | - Thomas C. Gardinier
- Department of Materials Science & Engineering, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| | - Peter A. Beaucage
- Department of Materials Science & Engineering, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| | | | - Ulrich Wiesner
- Department of Materials Science & Engineering, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|