1
|
Hu C, Wang J, Gao X, Xia J, Li W, Song P, Zhang W, Ge F, Zhu L. Pluronic-Based Nanoparticles for Delivery of Doxorubicin to the Tumor Microenvironment by Binding to Macrophages. ACS NANO 2024; 18:14441-14456. [PMID: 38758604 DOI: 10.1021/acsnano.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
The active targeting drug delivery system based on special types of endogenous cells such as macrophages has emerged as a promising strategy for tumor therapy, owing to its tumor homing property and biocompatibility. In this work, the active tumor-targeting drug delivery system carrying doxorubicin-loaded nanoparticles (DOX@MPF127-MCP-1, DMPM) on macrophage (RAW264.7) surfaces via the mediation of interaction with the CCR2/MCP-1 axis was exploited. Initially, the amphiphilic block copolymer Pluronic F127 (PF127) was carboxylated to MPF127 at the hydroxyl terminus. Subsequently, MPF127 was modified with MCP-1 peptide to prepare MPF127-MCP-1 (MPM). The DOX was wrapped in MPM to form DMPM nanomicelles (approximately 100 nm) during the self-assembly process of MPM. The DMPM spontaneously bound to macrophages (RAW264.7), which resulted in the construction of an actively targeting delivery system (macrophage-DMPM, MA-DMPM) in vitro and in vivo. The DOX in MA-DMPM was released in the acidic tumor microenvironment (TME) in a pH-responsive manner to increase DOX accumulation and enhance the tumor treatment effect. The ratio of MA-DMPM homing reached 220% in vitro compared with the control group, indicating that the MA-DMPM was excellently capable of tumor-targeting delivery. In in vivo experiments, nonsmall cell lung cancer cell (NCI-H1299) tumor models were established. The results of the fluorescence imaging system (IVIS) showed that MA-DMPM demonstrated tremendous tumor-targeting ability in vivo. The antitumor effects of MA-DMPM in vivo indicated that the proportion of tumor cell apoptosis in the DMPM-treated group was 63.33%. The findings of the tumor-bearing mouse experiment proved that MA-DMPM significantly suppressed tumor cell growth, which confirmed its immense potential and promising applications in tumor therapy.
Collapse
Affiliation(s)
- Chengrui Hu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Xinxing Gao
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, Jiangsu 225300, Peoples Republic of China
| | - Jie Xia
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| | - Longbao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, Peoples Republic of China
| |
Collapse
|