1
|
Ohfuji S. Congenital cerebello-cerebral cortical degeneration in a calf. Res Vet Sci 2025; 190:105652. [PMID: 40288240 DOI: 10.1016/j.rvsc.2025.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/13/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Among neurodegenerative disorders affecting neurons in the central nervous system of domestic animals is a distinct entity known as multisystem neuronal degeneration which is often associated with significant cerebellar involvement. Occurrence of such a multisystem neuronal degeneration has extremely been uncommon in the bovine species. A female Shorthorn calf clinically presented with progressive ataxic signs that had lasted since birth until her euthanasia at 4.5 months of age. Confirmed histopathologically, the cerebellum exhibited severe and mild cortical degeneration: the former was present in grossly atrophied anterior vermis and flocculonodular lobe, which demonstrated total and subtotal loss of Purkinje and granule cells, respectively; the latter, in grossly normal posterior vermis which displayed varying degrees of Purkinje cell loss, while preserving granule cells. Concurrent with these cerebellar cortical lesions were shrinkage of a few neurons in the olivary nuclei of the medulla oblongata and focal cerebral cortical degeneration comprising neuronal red cell change in the left parietal lobe. This congenital progressive neurodegenerative disorder manifesting as combined cerebellar and cerebral cortical degeneration was regarded as a new variant of multisystem neuronal degeneration in the bovine species, most likely giving rise to a functional impairment of the feedback circuit between the cerebellar and cerebral cortex. This neurodegenerative disorder should be subclassified on clinical and neuropathologic grounds as a descriptive term congenital cerebello-cerebral cortical degeneration.
Collapse
Affiliation(s)
- Susumu Ohfuji
- Department of Histopathology, Diagnostic Animal Pathology Office, Sapporo 063-0041, Hokkaido, Japan.
| |
Collapse
|
2
|
Li JQ, Ma XH, Dai H, Wang CC, Zhang J, Meng XL. Isoliensinine ameliorates cognitive dysfunction in AlCl 3/D-gal-induced Alzheimer's disease-like mice by inhibiting the calcium signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119567. [PMID: 40020795 DOI: 10.1016/j.jep.2025.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The embryos of lotus (Nelumbo nucifera Gaertn.) is a famous traditional Chinese medicine used to treat insomnia, memory decline, and dementia for a long time. However, the underlying material basis and mechanisms of this medicine are still unclear. Isoliensinine (IL) is a major alkaloid derived from lotus embryos. Our previous research has demonstrated that IL can exert strong anti-inflammatory and neuroprotective effects in vitro. AIM OF THE STUDY To reveal the underlying therapeutic effect and mechanism of IL on Alzheimer's disease (AD)-like mice induced by AlCl3 and D-galactose (D-gal) in vivo. MATERIALS AND METHODS The AD-like mice were modeled by intragastric injection (i.g.) of AlCl3 (20 mg/kg/day) and intraperitoneal injection (i.p.) of D-gal (120 mg/kg/day) for 8 weeks. Starting from the third week, AD-like mice were treated with IL (1, 3, or 10 mg/kg/day; i.p.) for 6 weeks. Cognitive impairment in AD-like mice was evaluated through some behavioral experiments including nest building, open field, novel object recognition, Y maze, and Morris water maze tests. The cortex and hippocampus (DG, CA1, and CA3) regions were analyzed as follows: Neuronal pathological changes and neurofibrillary tangles (NFTs) formation were observed by hematoxylin-eosin (HE) and silver staining, respectively; The production of Aβ plaques and the activation of microglia and astrocytes were detected by immunohistochemistry; The levels of Ca2+ levels were determined by the ortho-cresolphtalein complexone method. The levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β) were analyzed using the ELISA kits. The expression of CaM, p-CaMKII, Calpain, CDK5, p35/p25, p-Tau, ADAM10, BACE1, PSEN1, APP, Aβ1-42, p-IκBα, and IκBα were evaluated by western blotting. RESULTS IL (1, 3, and 10 mg/kg) treatment effectively ameliorated cognitive impairment in AD-like model mice. IL inhibited the decrease of brain index and body weight in AD-like mice and alleviated neuronal damage in the cortex and hippocampus (DG, CA1, and CA3). IL decreased the levels of Ca2+ and reduce high expression of CaM and Calpain in the cortex and hippocampus of AD-like mice. IL treatment did not affect the expression of CDK5 but inhibited the expression of p-CaMKII and p25/p35, and reduced Tau phosphorylation and NFTs formation. IL also down-regulated the high expression of Aβ1-42 and APP and regulated the expression of APP-cleavage secretase (reducing the expression of BACE1 and PSEN1, while increasing the expression of ADAM10), thereby inhibited the production of Aβ plaques in AD-like mouse brain. Moreover, IL inhibited the phosphorylation and degradation of IκBα, as well as the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β), and prevented the activation of microglia and astrocytes in AD-like mice. CONCLUSIONS IL has a significant therapeutic effect on pathological alterations and cognitive impairment in AlCl3 and D-gal-induced AD-like mice, indicating that IL may have the potential to treat AD. The anti-AD activity of IL may be associated with its regulation of the Ca2+ homeostasis and downstream signaling molecules such as CaM and Calpain.
Collapse
Affiliation(s)
- Jin-Qiu Li
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Xiao-Han Ma
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Hui Dai
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Cheng-Cheng Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Jing Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China
| | - Xue-Lian Meng
- School of Pharmaceutical Science, Liaoning University, Shenyang, People's Republic of China.
| |
Collapse
|
3
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. Acta Neuropathol Commun 2025; 13:31. [PMID: 39955563 PMCID: PMC11829413 DOI: 10.1186/s40478-025-01935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025] Open
Abstract
Pathological tau isoforms, including hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers (Oligo-tau), are elevated in the retinas of patients with mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and AD dementia. These patients exhibit significant retinal ganglion cell (RGC) loss, however the presence of tau isoforms in RGCs and their impact on RGC integrity, particularly in early AD, have not been studied. Here, we analyzed retinal superior temporal cross-sections from 25 MCI or AD patients and 16 age- and sex-matched cognitively normal controls. Using the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining, we found a 46-56% reduction in RBPMS+ RGCs and Nissl+ neurons in the ganglion cell layer (GCL) of MCI and AD retinas (P < 0.05-0.001). RGC loss was accompanied by soma hypertrophy (10-50% enlargement, P < 0.05-0.0001), nuclear displacement, apoptosis (30-50% increase, P < 0.05-0.01), and prominent expression of granulovacuolar degeneration (GVD) bodies and GVD-necroptotic markers. Both pS396-tau and Oligo-tau were identified in RGCs, including in hypertrophic cells. PS396-tau+ and Oligo-tau+ RGC counts were significantly increased by 2.1-3.5-fold in MCI and AD retinas versus control retinas (P < 0.05-0.0001). Tauopathy-laden RGCs strongly inter-correlated (rP=0.85, P < 0.0001) and retinal tauopathy associated with RGC reduction (rP=-0.40-(-0.64), P < 0.05-0.01). Their abundance correlated with brain pathology and cognitive deficits, with higher tauopathy-laden RGCs in patients with Braak stages (V-VI), clinical dementia ratings (CDR = 3), and mini-mental state examination (MMSE ≤ 26) scores. PS396-tau+ RGCs in the central and mid-periphery showed the closest associations with disease status, while Oligo-tau+ RGCs in the mid-periphery exhibited the strongest correlations with brain pathology (NFTs, Braak stages, ABC scores; rS=0.78-0.81, P < 0.001-0.0001) and cognitive decline (MMSE; rS=-0.79, P = 0.0019). Overall, these findings identify a link between pathogenic tau in RGCs and RGC degeneration in AD, involving apoptotic and GVD-necroptotic cell death pathways. Future research should validate these results in larger and more diverse cohorts and develop RGC tauopathy as a potential noninvasive biomarker for early detection and monitoring of AD progression.
Collapse
Affiliation(s)
- Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, Madrid, 28040, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, 28040, Spain
- Health Research Institute, Clinico San Carlos Hospital (IdISSC), Madrid, 28040, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Bhakta P Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A Sadun
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars- Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Lathe R, Balin B. A historic case of relapsing-remitting Alzheimer's disease in an adolescent attributed to scarlet fever. J Alzheimers Dis Rep 2025; 9:25424823241298530. [PMID: 40034507 PMCID: PMC11864263 DOI: 10.1177/25424823241298530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 03/05/2025] Open
Abstract
We draw attention to a historic case of a boy who suffered from scarlet fever (typically caused by the bacterium Streptococcus pyogenes) at age 7 years and went on to develop the symptoms of Alzheimer's disease (AD). His physicians believed that the subsequent dementia was related to the infection. After death at 24 years of age, postmortem brain examination revealed abundant AD-type senile plaques and fibrils, formally confirming AD. Other potential causes of early-onset dementia are discussed, but these are distinct from patient E.H. This case is pertinent regarding the current debate about the potential role of infection in AD.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Little France, Edinburgh, UK
- Alzheimer's Pathobiome Initiative, Wake Forest, NC, USA
| | - Brian Balin
- Alzheimer's Pathobiome Initiative, Wake Forest, NC, USA
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Deng X, Ding J, Liu C, Wang Z, Wang J, Duan Q, Li W, Chen X, Tang X, Zhao L. Progressive histological and behavioral deterioration of a novel mouse model of secondary hydrocephalus after subarachnoid hemorrhage. Sci Rep 2024; 14:31794. [PMID: 39738570 PMCID: PMC11685592 DOI: 10.1038/s41598-024-82843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Hydrocephalus commonly occurs after subarachnoid hemorrhage (SAH) and is associated with increased morbidity and disability in patients with SAH. Choroid plexus cerebrospinal fluid (CSF) hypersecretion, obliterative arachnoiditis occluding the arachnoid villi, lymphatic obstruction, subarachnoid fibrosis, and glymphatic system injury are considered the main pathological mechanisms of hydrocephalus after SAH. Although the mechanisms of hydrocephalus after SAH are increasingly being revealed, the clinical prognosis of SAH still has not improved significantly. Further research on SAH is needed to reveal the underlying mechanisms of hydrocephalus and develop translatable therapies. A model that can stably mimic the histopathological and neuroethological features of hydrocephalus is critical for animal experiments. There have been fewer animal studies on hydrocephalus after SAH than on other stroke subtypes. The development of a reproducible and effective model of hydrocephalus after SAH is essential. In this study, we establish a mouse model of SAH that stably mimics brain injury and hydrocephalus after SAH through injections of autologous blood into the cisterna magna via different methods and characterize the model in terms of neurological behavior, histology, imaging, neuronal damage, and white matter damage.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Chang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Junchi Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Weida Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xinlong Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
6
|
Yergeshov A, Zoughaib M, Dayob K, Kamalov M, Luong D, Zakirova A, Mullin R, Salakhieva D, Abdullin TI. Newly Designed PCL-Wrapped Cryogel-Based Conduit Activated with IKVAV Peptide Derivative for Peripheral Nerve Repair. Pharmaceutics 2024; 16:1569. [PMID: 39771548 PMCID: PMC11677967 DOI: 10.3390/pharmaceutics16121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. Methods: In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart. The optimized cryogel scaffold was combined with polycaprolactone (PCL)-based shell tube to form a suturable nerve conduit (NC) to be implanted into sciatic nerve diastasis in rats. Results: The NC constituents did not impair the viability of primary skin fibroblasts. Concentration-dependent effects of the peptide component on interrelated viscoelastic and swelling properties of the cryogels as well as on proliferation and morphological differentiation of neurogenic PC-12 cells were established, also indicating the existence of an optimal-density range of the introduced peptide. The in vivo implanted NC sustained the connection of the nerve stumps with partial degradation of the PCL tube over eight weeks, whereas the core-filling cryogel profoundly improved local electromyographic recovery and morphological repair of the nerve tissues, confirming the regenerative activity of the developed scaffold. Conclusions: These results provide proof-of-concept for the development of a newly designed PN conduit prototype based on IKVAV-activated cryogel, and they can be exploited to create other ECM-mimicking scaffolds.
Collapse
Affiliation(s)
- Abdulla Yergeshov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Mohamed Zoughaib
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Kenana Dayob
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Marat Kamalov
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Duong Luong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Albina Zakirova
- Academy of Postgraduate Education under FSBU FSCC of FMBA of Russia, Department of Oncology and Plastic Surgery, 91 Volokolamsk Highway, 125371 Moscow, Russia
| | - Ruslan Mullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- State Autonomous Healthcare Institution Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, 138 Orenburg Highway, 420064 Kazan, Russia
| | - Diana Salakhieva
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
| | - Timur I. Abdullin
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia (M.Z.); (K.D.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| |
Collapse
|
7
|
Ghetti B, Schweighauser M, Jacobsen MH, Gray D, Bacioglu M, Murzin AG, Glazier BS, Katsinelos T, Vidal R, Newell KL, Gao S, Garringer HJ, Spillantini MG, Scheres SHW, Goedert M. TMEM106B amyloid filaments in the Biondi bodies of ependymal cells. Acta Neuropathol 2024; 148:60. [PMID: 39503754 PMCID: PMC11541264 DOI: 10.1007/s00401-024-02807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 11/09/2024]
Abstract
Biondi bodies are filamentous amyloid inclusions of unknown composition in ependymal cells of the choroid plexuses, ependymal cells lining cerebral ventricles and ependymal cells of the central canal of the spinal cord. Their formation is age-dependent and they are commonly associated with a variety of neurodegenerative conditions, including Alzheimer's disease and Lewy body disorders. Here, we show that Biondi bodies are strongly immunoreactive with TMEM239, an antibody specific for inclusions of transmembrane protein 106B (TMEM106B). Biondi bodies were labelled by both this antibody and the amyloid dye pFTAA. Many Biondi bodies were also labelled for TMEM106B and the lysosomal markers Hexosaminidase A and Cathepsin D. By transmission immuno-electron microscopy, Biondi bodies of choroid plexuses were decorated by TMEM239 and were associated with structures that resembled residual bodies or secondary lysosomes. By electron cryo-microscopy, TMEM106B filaments from Biondi bodies of choroid plexuses were similar (Biondi variant), but not identical, to the fold I that was previously identified in filaments from brain parenchyma.
Collapse
Affiliation(s)
- Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | - Max H Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Derrick Gray
- Center for Electron Microscopy, Indiana University School of Medicine, Indianapolis, USA
| | - Mehtap Bacioglu
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
| | - Alexey G Murzin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Bradley S Glazier
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, USA
| | - Holly J Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, USA
| | | | - Sjors H W Scheres
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Michel Goedert
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
8
|
Davis MR, Robinson E, Koronyo Y, Salobrar-Garcia E, Rentsendorj A, Gaire BP, Mirzaei N, Kayed R, Sadun AA, Ljubimov AV, Schneider LS, Hawes D, Black KL, Fuchs DT, Koronyo-Hamaoui M. Retinal ganglion cell vulnerability to pathogenic tau in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613293. [PMID: 39345568 PMCID: PMC11430098 DOI: 10.1101/2024.09.17.613293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Accumulation of pathological tau isoforms, especially hyperphosphorylated tau at serine 396 (pS396-tau) and tau oligomers, has been demonstrated in the retinas of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Previous studies have noted a decrease in retinal ganglion cells (RGCs) in AD patients, but the presence and impact of pathological tau isoforms in RGCs and RGC integrity, particularly in early AD stages, have not been explored. To investigate this, we examined retinal superior temporal cross-sections from 25 patients with MCI (due to AD) or AD dementia and 16 cognitively normal (CN) controls, matched for age and gender. We utilized the RGC marker ribonucleic acid binding protein with multiple splicing (RBPMS) and Nissl staining to assess neuronal density in the ganglion cell layer (GCL). Our study found that hypertrophic RGCs containing pS396-tau and T22-positive tau oligomers were more frequently observed in MCI and AD patients compared to CN subjects. Quantitative analyses indicated a decline in RGC integrity, with 46-55% and 55-56% reductions of RBPMS+ RGCs (P<0.01) and Nissl+ GCL neurons (P<0.01-0.001), respectively, in MCI and AD patients. This decrease in RGC count was accompanied by increases in necroptotic-like morphology and the cleaved caspase-3 apoptotic marker in RGCs of AD patients. Furthermore, there was a 2.1 to 3.1-fold increase (P<0.05-0.0001) in pS396-tau-laden RGCs in MCI and AD patients, with a greater abundance observed in individuals with higher Braak stages (V-VI), more severe clinical dementia ratings (CDR=3), and lower mini-mental state examination (MMSE) scores. Strong correlations were noted between the decline in RGCs and the total amount of retinal pS396-tau and pS396-tau+ RGCs, with pS396-tau+ RGC counts correlating significantly with brain neurofibrillary tangle scores (r= 0.71, P= 0.0001), Braak stage (r= 0.65, P= 0.0009), and MMSE scores (r= -0.76, P= 0.0004). These findings suggest that retinal tauopathy, characterized by pS396-tau and oligomeric tau in hypertrophic RGCs, is associated with and may contribute to RGC degeneration in AD. Future research should validate these findings in larger cohorts and explore noninvasive retinal imaging techniques that target tau pathology in RGCs to improve AD detection and monitor disease progression.
Collapse
Affiliation(s)
- Miyah R. Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Elena Salobrar-Garcia
- Institute of Ophthalmologic Research Ramón Castroviejo, Complutense University of Madrid, 28040 Madrid, Spain. Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain. Health Research Institute, Clinico San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bhakta P. Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfredo A. Sadun
- Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
- Doheny Eye Institute, Los Angeles, CA, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S. Schneider
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Debra Hawes
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Karat BG, Genc S, Raven EP, Palombo M, Khan AR, Jones DK. The developing hippocampus: Microstructural evolution through childhood and adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608590. [PMID: 39229062 PMCID: PMC11370384 DOI: 10.1101/2024.08.19.608590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The hippocampus is a structure in the medial temporal lobe which serves multiple cognitive functions. While important, the development of the hippocampus in the formative period of childhood and adolescence has not been extensively investigated, with most contemporary research focusing on macrostructural measures of volume. Thus, there has been little research on the development of the micron-scale structures (i.e., microstructure) of the hippocampus, which engender its cognitive functions. The current study examined age-related changes of hippocampal microstructure using diffusion MRI data acquired with an ultra-strong gradient (300 mT/m) MRI scanner in a sample of children and adolescents (N=88; 8-19 years). Surface-based hippocampal modelling was combined with established microstructural approaches, such as Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion Density Imaging (NODDI), and a more advanced gray matter diffusion model Soma And Neurite Density Imaging (SANDI). No significant changes in macrostructural measures (volume, gyrification, and thickness) were found between 8-19 years, while significant changes in microstructure measures related to neurites (from NODDI and SANDI), soma (from SANDI), and mean diffusivity (from DTI) were found. In particular, there was a significant increase across age in neurite MR signal fraction and a significant decrease in extracellular MR signal fraction and mean diffusivity across the hippocampal subfields and long-axis. A significant negative correlation between age and MR apparent soma radius was found in the subiculum and CA1 throughout the anterior and body of the hippocampus. Further surface-based analyses uncovered variability in age-related microstructural changes between the subfields and long-axis, which may reflect ostensible developmental differences along these two axes. Finally, correlation of hippocampal surfaces representing age-related changes of microstructure with maps derived from histology allowed for postulation of the potential underlying microstructure that diffusion changes across age may be capturing. Overall, distinct neurite and soma developmental profiles in the human hippocampus during late childhood and adolescence are reported for the first time.
Collapse
Affiliation(s)
- Bradley G Karat
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Sila Genc
- Department of Neurosurgery, The Royal Children's Hospital, Melbourne, Australia
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Ali R Khan
- Robarts Research Institute, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Shi H, Mirzaei N, Koronyo Y, Davis MR, Robinson E, Braun GM, Jallow O, Rentsendorj A, Ramanujan VK, Fert-Bober J, Kramerov AA, Ljubimov AV, Schneider LS, Tourtellotte WG, Hawes D, Schneider JA, Black KL, Kayed R, Selenica MLB, Lee DC, Fuchs DT, Koronyo-Hamaoui M. Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol 2024; 148:3. [PMID: 38980423 PMCID: PMC11233395 DOI: 10.1007/s00401-024-02760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
This study investigates various pathological tau isoforms in the retina of individuals with early and advanced Alzheimer's disease (AD), exploring their connection with disease status. Retinal cross-sections from predefined superior-temporal and inferior-temporal subregions and corresponding brains from neuropathologically confirmed AD patients with a clinical diagnosis of either mild cognitive impairment (MCI) or dementia (n = 45) were compared with retinas from age- and sex-matched individuals with normal cognition (n = 30) and non-AD dementia (n = 4). Retinal tau isoforms, including tau tangles, paired helical filament of tau (PHF-tau), oligomeric-tau (Oligo-tau), hyperphosphorylated-tau (p-tau), and citrullinated-tau (Cit-tau), were stereologically analyzed by immunohistochemistry and Nanostring GeoMx digital spatial profiling, and correlated with clinical and neuropathological outcomes. Our data indicated significant increases in various AD-related pretangle tau isoforms, especially p-tau (AT8, 2.9-fold, pS396-tau, 2.6-fold), Cit-tau at arginine residue 209 (CitR209-tau; 4.1-fold), and Oligo-tau (T22+, 9.2-fold), as well as pretangle and mature tau tangle forms like MC-1-positive (1.8-fold) and PHF-tau (2.3-fold), in AD compared to control retinas. MCI retinas also exhibited substantial increases in Oligo-tau (5.2-fold), CitR209-tau (3.5-fold), and pS396-tau (2.2-fold). Nanostring GeoMx analysis confirmed elevated retinal p-tau at epitopes: Ser214 (2.3-fold), Ser396 (2.6-fold), Ser404 (2.4-fold), and Thr231 (1.8-fold), particularly in MCI patients. Strong associations were found between retinal tau isoforms versus brain pathology and cognitive status: a) retinal Oligo-tau vs. Braak stage, neurofibrillary tangles (NFTs), and CDR cognitive scores (ρ = 0.63-0.71), b) retinal PHF-tau vs. neuropil threads (NTs) and ABC scores (ρ = 0.69-0.71), and c) retinal pS396-tau vs. NTs, NFTs, and ABC scores (ρ = 0.67-0.74). Notably, retinal Oligo-tau strongly correlated with retinal Aβ42 and arterial Aβ40 forms (r = 0.76-0.86). Overall, this study identifies and quantifies diverse retinal tau isoforms in MCI and AD patients, underscoring their link to brain pathology and cognition. These findings advocate for further exploration of retinal tauopathy biomarkers to facilitate AD detection and monitoring via noninvasive retinal imaging.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Miyah R Davis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Edward Robinson
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Gila M Braun
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lon S Schneider
- Departments of Psychiatry and the Behavioral Sciences and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Debra Hawes
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie A Schneider
- Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Maj-Linda B Selenica
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Daniel C Lee
- Sanders-Brown Center On Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., A6212, Los Angeles, CA, 90048, USA.
- Division of Applied Cell Biology and Physiology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Hulse J, Maphis N, Peabody J, Chackerian B, Bhaskar K. Virus-like particle (VLP)-based vaccine targeting tau phosphorylated at Ser396/Ser404 (PHF1) site outperforms phosphorylated S199/S202 (AT8) site in reducing tau pathology and restoring cognitive deficits in the rTg4510 mouse model of tauopathy. RESEARCH SQUARE 2024:rs.3.rs-4390998. [PMID: 38946961 PMCID: PMC11213181 DOI: 10.21203/rs.3.rs-4390998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD) and Frontotemporal Dementia (FTD), are histopathologically defined by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles in the brain. Site-specific phosphorylation of tau occurs early in the disease process and correlates with progressive cognitive decline, thus serving as targetable pathological epitopes for immunotherapeutic development. Previously, we developed a vaccine (Qβ-pT181) displaying phosphorylated Thr181 tau peptides on the surface of a Qβ bacteriophage virus-like particle (VLP) that induced robust antibody responses, cleared pathological tau, and rescued memory deficits in a transgenic mouse model of tauopathy. Here we report the characterization and comparison of two additional Qβ VLP-based vaccines targeting the dual phosphorylation sites Ser199/Ser202 (Qβ-AT8) and Ser396/Ser404 (Qβ-PHF1). Both Qβ-AT8 and Qβ-PHF1 vaccines elicited high-titer antibody responses against their pTau epitopes. However, only Qβ-PHF1 rescued cognitive deficits, reduced soluble and insoluble pathological tau, and reactive microgliosis in a 4-month rTg4510 model of FTD. Both sera from Qβ-AT8 and Qβ-PHF1 vaccinated mice were specifically reactive to tau pathology in human AD post-mortem brain sections. These studies further support the use of VLP-based immunotherapies to target pTau in AD and related tauopathies and provide potential insight into the clinical efficacy of various pTau epitopes in the development of immunotherapeutics.
Collapse
Affiliation(s)
- Jonathan Hulse
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Nicole Maphis
- Department of Neurosciences, University Of New Mexico, Albuquerque, NM. USA
| | - Julianne Peabody
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Bryce Chackerian
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology, University Of New Mexico, Albuquerque, NM. USA
- Department of Neurology, University Of New Mexico, Albuquerque, NM. USA
| |
Collapse
|
12
|
Ferrer I. Historical review: The golden age of the Golgi method in human neuropathology. J Neuropathol Exp Neurol 2024; 83:375-395. [PMID: 38622902 DOI: 10.1093/jnen/nlae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Golgi methods were used to study human neuropathology in the 1970s, 1980s, and 1990s of the last century. Although a relatively small number of laboratories applied these methods, their impact was crucial by increasing knowledge about: (1) the morphology, orientation, and localization of neurons in human cerebral and cerebellar malformations and ganglionic tumors, and (2) the presence of abnormal structures including large and thin spines (spine dysgenesis) in several disorders linked to mental retardation, focal enlargements of the axon hillock and dendrites (meganeurites) in neuronal storage diseases, growth cone-like appendages in Alzheimer disease, as well as abnormal structures in other dementias. Although there were initial concerns about their reliability, reduced dendritic branches and dendritic spines were identified as common alterations in mental retardation, dementia, and other pathological conditions. Similar observations in appropriate experimental models have supported many abnormalities that were first identified using Golgi methods in human material. Moreover, electron microscopy, immunohistochemistry, fluorescent tracers, and combined methods have proven the accuracy of pioneering observations uniquely visualized as 3D images of fully stained individual neurons. Although Golgi methods had their golden age many years ago, these methods may still be useful complementary tools in human neuropathology.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de LLobregat, Spain
| |
Collapse
|
13
|
Sano T, Nagata T, Ebihara S, Yoshida-Tanaka K, Nakamura A, Sasaki A, Shimozawa A, Mochizuki H, Uchihara T, Hasegawa M, Yokota T. Effects of local reduction of endogenous α-synuclein using antisense oligonucleotides on the fibril-induced propagation of pathology through the neural network in wild-type mice. Acta Neuropathol Commun 2024; 12:75. [PMID: 38745295 PMCID: PMC11092238 DOI: 10.1186/s40478-024-01766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
In Parkinson's disease and other synucleinopathies, fibrillar forms of α-synuclein (aSyn) are hypothesized to structurally convert and pathologize endogenous aSyn, which then propagates through the neural connections, forming Lewy pathologies and ultimately causing neurodegeneration. Inoculation of mouse-derived aSyn preformed fibrils (PFFs) into the unilateral striatum of wild-type mice causes widespread aSyn pathologies in the brain through the neural network. Here, we used the local injection of antisense oligonucleotides (ASOs) against Snca mRNA to confine the area of endogenous aSyn protein reduction and not to affect the PFFs properties in this model. We then varied the timing and location of ASOs injection to examine their impact on the initiation and propagation of aSyn pathologies in the whole brain and the therapeutic effect using abnormally-phosphorylated aSyn (pSyn) as an indicator. By injecting ASOs before or 0-14 days after the PFFs were inoculated into the same site in the left striatum, the reduction in endogenous aSyn in the striatum leads to the prevention and inhibition of the regional spread of pSyn pathologies to the whole brain including the contralateral right hemisphere. ASO post-injection inhibited extension from neuritic pathologies to somatic ones. Moreover, injection of ASOs into the right striatum prevented the remote regional spread of pSyn pathologies from the left striatum where PFFs were inoculated and no ASO treatment was conducted. This indicated that the reduction in endogenous aSyn protein levels at the propagation destination site can attenuate pSyn pathologies, even if those at the propagation initiation site are not inhibited, which is consistent with the original concept of prion-like propagation that endogenous aSyn is indispensable for this regional spread. Our results demonstrate the importance of recruiting endogenous aSyn in this neural network propagation model and indicate a possible potential for ASO treatment in synucleinopathies.
Collapse
Affiliation(s)
- Tatsuhiko Sano
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| | - Satoe Ebihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Ayako Nakamura
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Asuka Sasaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Aki Shimozawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-0057, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Toshiki Uchihara
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Masato Hasegawa
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-0057, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
- NucleoTIDE and PepTIDE Drug Discovery Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan.
| |
Collapse
|
14
|
Hencz AJ, Magony A, Thomas C, Kovacs K, Szilagyi G, Pal J, Sik A. Short-term hyperoxia-induced functional and morphological changes in rat hippocampus. Front Cell Neurosci 2024; 18:1376577. [PMID: 38686017 PMCID: PMC11057248 DOI: 10.3389/fncel.2024.1376577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Excess oxygen (O2) levels may have a stimulating effect, but in the long term, and at high concentrations of O2, it is harmful to the nervous system. The hippocampus is very sensitive to pathophysiological changes and altered O2 concentrations can interfere with hippocampus-dependent learning and memory functions. In this study, we investigated the hyperoxia-induced changes in the rat hippocampus to evaluate the short-term effect of mild and severe hyperoxia. Wistar male rats were randomly divided into control (21% O2), mild hyperoxia (30% O2), and severe hyperoxia groups (100% O2). The O2 exposure lasted for 60 min. Multi-channel silicon probes were used to study network oscillations and firing properties of hippocampal putative inhibitory and excitatory neurons. Neural damage was assessed using the Gallyas silver impregnation method. Mild hyperoxia (30% O2) led to the formation of moderate numbers of silver-impregnated "dark" neurons in the hippocampus. On the other hand, exposure to 100% O2 was associated with a significant increase in the number of "dark" neurons located mostly in the hilus. The peak frequency of the delta oscillation decreased significantly in both mild and severe hyperoxia in urethane anesthetized rats. Compared to normoxia, the firing activity of pyramidal neurons under hyperoxia increased while it was more heterogeneous in putative interneurons in the cornu ammonis area 1 (CA1) and area 3 (CA3). These results indicate that short-term hyperoxia can change the firing properties of hippocampal neurons and network oscillations and damage neurons. Therefore, the use of elevated O2 concentration inhalation in hospitals (i.e., COVID treatment and surgery) and in various non-medical scenarios (i.e., airplane emergency O2 masks, fire-fighters, and high altitude trekkers) must be used with extreme caution.
Collapse
Affiliation(s)
| | - Andor Magony
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Chloe Thomas
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Krisztina Kovacs
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gabor Szilagyi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Jozsef Pal
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Frigon EM, Gérin-Lajoie A, Dadar M, Boire D, Maranzano J. Comparison of histological procedures and antigenicity of human post-mortem brains fixed with solutions used in gross anatomy laboratories. Front Neuroanat 2024; 18:1372953. [PMID: 38659652 PMCID: PMC11039794 DOI: 10.3389/fnana.2024.1372953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Background Brain banks provide small tissue samples to researchers, while gross anatomy laboratories could provide larger samples, including complete brains to neuroscientists. However, they are preserved with solutions appropriate for gross-dissection, different from the classic neutral-buffered formalin (NBF) used in brain banks. Our previous work in mice showed that two gross-anatomy laboratory solutions, a saturated-salt-solution (SSS) and an alcohol-formaldehyde-solution (AFS), preserve antigenicity of the main cellular markers (neurons, astrocytes, microglia, and myelin). Our goal is now to compare the quality of histology and antigenicity preservation of human brains fixed with NBF by immersion (practice of brain banks) vs. those fixed with a SSS and an AFS by whole body perfusion, practice of gross-anatomy laboratories. Methods We used a convenience sample of 42 brains (31 males, 11 females; 25-90 years old) fixed with NBF (N = 12), SSS (N = 13), and AFS (N = 17). One cm3 tissue blocks were cut, cryoprotected, frozen and sliced into 40 μm sections. The four cell populations were labeled using immunohistochemistry (Neurons = neuronal-nuclei = NeuN, astrocytes = glial-fibrillary-acidic-protein = GFAP, microglia = ionized-calcium-binding-adaptor-molecule1 = Iba1 and oligodendrocytes = myelin-proteolipid-protein = PLP). We qualitatively assessed antigenicity and cell distribution, and compared the ease of manipulation of the sections, the microscopic tissue quality, and the quality of common histochemical stains (e.g., Cresyl violet, Luxol fast blue, etc.) across solutions. Results Sections of SSS-fixed brains were more difficult to manipulate and showed poorer tissue quality than those from brains fixed with the other solutions. The four antigens were preserved, and cell labeling was more often homogeneous in AFS-fixed specimens. NeuN and GFAP were not always present in NBF and SSS samples. Some antigens were heterogeneously distributed in some specimens, independently of the fixative, but an antigen retrieval protocol successfully recovered them. Finally, the histochemical stains were of sufficient quality regardless of the fixative, although neurons were more often paler in SSS-fixed specimens. Conclusion Antigenicity was preserved in human brains fixed with solutions used in human gross-anatomy (albeit the poorer quality of SSS-fixed specimens). For some specific variables, histology quality was superior in AFS-fixed brains. Furthermore, we show the feasibility of frequently used histochemical stains. These results are promising for neuroscientists interested in using brain specimens from anatomy laboratories.
Collapse
Affiliation(s)
- Eve-Marie Frigon
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Amy Gérin-Lajoie
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Mahsa Dadar
- Department of Psychiatry, Douglas Research Center, McGill University, Montreal, QC, Canada
| | - Denis Boire
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Josefina Maranzano
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Hulse J, Maphis N, Peabody J, Chackerian B, Bhaskar K. Virus-like particle (VLP)-based vaccine targeting tau phosphorylated at Ser396/Ser404 (PHF1) site outperforms phosphorylated S199/S202 (AT8) site in reducing tau pathology and restoring cognitive deficits in the rTg4510 mouse model of tauopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588338. [PMID: 38644999 PMCID: PMC11030413 DOI: 10.1101/2024.04.05.588338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Tauopathies, including Alzheimer's disease (AD) and Frontotemporal Dementia (FTD), are histopathologically defined by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles in the brain. Site-specific phosphorylation of tau occurs early in the disease process and correlates with progressive cognitive decline, thus serving as targetable pathological epitopes for immunotherapeutic development. Previously, we developed a vaccine (Qβ-pT181) displaying phosphorylated Thr181 tau peptides on the surface of a Qβ bacteriophage virus-like particle (VLP) that induced robust antibody responses, cleared pathological tau, and rescued memory deficits in a transgenic mouse model of tauopathy. Here we report the characterization and comparison of two additional Qβ VLP-based vaccines targeting the dual phosphorylation sites Ser199/Ser202 (Qβ-AT8) and Ser396/Ser404 (Qβ-PHF1). Both Qβ-AT8 and Qβ-PHF1 vaccines elicited high-titer antibody responses against their pTau epitopes. However, only Qβ-PHF1 rescued cognitive deficits, reduced soluble and insoluble pathological tau, and reactive microgliosis in a 4-month rTg4510 model of FTD. Both sera from Qβ-AT8 and Qβ-PHF1 vaccinated mice were specifically reactive to tau pathology in human AD post-mortem brain sections. These studies further support the use of VLP-based immunotherapies to target pTau in AD and related tauopathies and provide potential insight into the clinical efficacy of various pTau epitopes in the development of immunotherapeutics.
Collapse
|
17
|
Shushanyan R, Grigoryan A, Abgaryan T, Karapetyan A. Histological and cytochemical analysis of the brain under conditions of hypobaric hypoxia-induced oxygen deficiency in albino rats. Acta Histochem 2023; 125:152114. [PMID: 37980852 DOI: 10.1016/j.acthis.2023.152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
High altitude sickness is a life-threatening disease that occurs among acclimatized individuals working or living at a high altitude accompanied by hypobaric hypoxia exposure. The prolonged influence of hypobaric hypoxia on the brain may trigger neuronal damage and cell death due to an oxygen deficiency. The purpose of the current study was to investigate the histomorphological changes in the hippocampus, cerebral cortex, cerebellar cortex, and striatum of the rat's brain following chronic hypobaric hypoxia. Fourteen albino rats were used for this investigation. The animals were exposed to chronic hypobaric hypoxia in the special decompression chamber at an altitude of 7000 m for 7 days. The histological analysis was conducted via toluidine staining and silver impregnation. DNA damage and cell apoptosis were assessed via Feulgen staining. The histochemical assessment revealed increased dark neurons in the hippocampus with cell swelling. Silver impregnation showed increased argyrophilic neurons in the cerebellar cortex, striatum, CA1 subfield of the hippocampus, and cerebral cortex. The cytochemical analysis determined the increased apoptotic cells with hyperchromatic condensation and pyknosis in the hippocampus subfields and cerebral cortex. In addition, it has been observed that hypoxia has resulted in small hemorrhages and perivascular edema within the cerebellar and cerebral cortex. The results indicate brain injury observed in the various parts of the brain towards hypobaric hypoxia, however, the hippocampus showed greater vulnerability against hypoxic exposure in comparison to the striatum, cerebellum, and cerebral cortex. These changes support our insights regarding brain intolerance under conditions of hypoxia-induced oxygen deficiency and its histomorphological manifestations.
Collapse
Affiliation(s)
- Ruzanna Shushanyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Armenia.
| | - Anna Grigoryan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Armenia.
| | - Tamara Abgaryan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Armenia.
| | - Anna Karapetyan
- Department of Human and Animal Physiology, Yerevan State University, Yerevan, Armenia.
| |
Collapse
|
18
|
Kulichikhin KY, Malikova OA, Zobnina AE, Zalutskaya NM, Rubel AA. Interaction of Proteins Involved in Neuronal Proteinopathies. Life (Basel) 2023; 13:1954. [PMID: 37895336 PMCID: PMC10608209 DOI: 10.3390/life13101954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Proteinopathy is characterized by the accumulation of aggregates of a specific protein in a target organ, tissue, or cell. The aggregation of the same protein can cause different pathologies as single protein can adopt various amyloidogenic, disease-specific conformations. The conformation governs the interaction of amyloid aggregates with other proteins that are prone to misfolding and, thus, determines disease-specific spectrum of concomitant pathologies. In this regard, a detailed description of amyloid protein conformation as well as spectrum of its interaction with other proteins become a key point for drafting of precise description of the disease. The majority of clinical cases of neuronal proteinopathies is caused by the aggregation of rather limited range of amyloidogenic proteins. Here, we provided the characterization of pathologies, related to the aggregation of amyloid β peptide, tau protein, α-synuclein, TDP-43, and amylin, giving a short description of pathologies themselves, recent advances in elucidation of misfolded protein conformation, with emphasis on those protein aggregates extracted from biological samples, what is known about the interaction of this proteins, and the influence of this interaction on the progression of underlying disease and comorbidities.
Collapse
Affiliation(s)
- Konstantin Y. Kulichikhin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Oksana A. Malikova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Anastasia E. Zobnina
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| | - Natalia M. Zalutskaya
- V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 192019 St. Petersburg, Russia;
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (O.A.M.); (A.E.Z.)
| |
Collapse
|
19
|
Howard AFD, Huszar IN, Smart A, Cottaar M, Daubney G, Hanayik T, Khrapitchev AA, Mars RB, Mollink J, Scott C, Sibson NR, Sallet J, Jbabdi S, Miller KL. An open resource combining multi-contrast MRI and microscopy in the macaque brain. Nat Commun 2023; 14:4320. [PMID: 37468455 PMCID: PMC10356772 DOI: 10.1038/s41467-023-39916-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.
Collapse
Affiliation(s)
- Amy F D Howard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Istvan N Huszar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adele Smart
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Greg Daubney
- Wellcome Centre for Integrative Neuroimaging, Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jeroen Mollink
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Connor Scott
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging, Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Asghar H, Ahmed T. Comparative Study of Time-Dependent Aluminum Exposure and Post-Exposure Recovery Shows Better Improvement in Synaptic Changes and Neuronal Pathology in Rat Brain After Short-Term Exposure. Neurochem Res 2023:10.1007/s11064-023-03936-6. [PMID: 37093344 DOI: 10.1007/s11064-023-03936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Aluminum is a ubiquitous metal that causes multiple brain pathologies such as, cognitive dysfunction and Alzheimer's disease like symptoms. Exposure to aluminum through drinking water is responsible for hampering learning and memory. This study aimed to compare (1) the time-dependent effect of aluminum exposure (keeping total exposure of 5850 mg/kg same) in two durations, 30 and 45 days, and (2) to compare post-exposure self-recovery effect after 20 days in both (30 and 45 days exposure) groups. Rats were given 130 and 195 mg/kg of AlCl3·6H2O for 45 and 30 days respectively, to see the time-dependent exposure effect. At the end of exposure, rats were given distilled water and allowed to self-recover for 20 days to study the recovery. Expression levels of synaptic genes (Syp, SNAP25, Nrxn1/2, PSD95, Shank1/2, Homer1, CamkIV, Nrg1/2 and Kalrn) were measured using qPCR and compared in the exposure and recovery groups. Cellular morphology of the rat brain cortex and hippocampus was also investigated. Damage in lipid and protein profile was measured by employing FTIR. Results showed downregulation of mRNA expression of synaptic genes, plaques deposition, disorganization in lipid and protein profile by increasing membrane fluidity, and disorder and alteration of protein secondary structure after both exposure periods. However, better improvement/recovery in these parameters were observed in recovery group of 30 days aluminum exposure compared to 45 days aluminum exposure group. Taken together, these results suggested that short-term exposure resulted in better restoration of lipid and protein profile after time-dependent exposure of aluminum than prolonged exposure.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
21
|
Tetlow AM, Jackman BM, Alhadidy MM, Muskus P, Morgan DG, Gordon MN. Neural atrophy produced by AAV tau injections into hippocampus and anterior cortex of middle-aged mice. Neurobiol Aging 2023; 124:39-50. [PMID: 36739619 PMCID: PMC9957956 DOI: 10.1016/j.neurobiolaging.2022.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/24/2022]
Abstract
Animal models of tauopathy help in understanding the role of mutations in tau pathobiology. Here, we used adeno-associated viral (AAV) vectors to administer three tau genetic variants (tauwild-type, tauP301L, and tauR406W) intracranially into 12-month-old C57BL/6Nia mice and collected tissue at 16 months. Vectors designed to express green fluorescent protein controlled for surgical procedures and exogenous protein expression by AAV. The tau genetic variants produced considerably different phenotypes. Tauwild-type and tauP301L caused memory impairments. The tauP301L caused increased amounts of aggregated tau, measured both neurochemically and histologically. Tauwild-type produced elevated levels of soluble tau and phosphorylated tau by ELISA and increased staining for phosphorylated forms of tau histologically. However, only the tauwild-type caused localized atrophy of brain tissue at the sites near the injection. The tauR406W had low protein expression and produced no atrophy or memory impairments. This supports the potential use of AAV expressing tauwild-type in aged mice to examine events leading to neurodegeneration in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Amber M Tetlow
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA; School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Brianna M Jackman
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M Alhadidy
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Patricia Muskus
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G Morgan
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA.
| | - Marcia N Gordon
- Dept of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
22
|
Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, Barron E, Cook-Wiens G, Rodriguez AR, Medeiros R, Paulo JA, Gupta VB, Kramerov AA, Ljubimov AV, Van Eyk JE, Graham SL, Gupta VK, Ringman JM, Hinton DR, Miller CA, Black KL, Cattaneo A, Meli G, Mirzaei M, Fuchs DT, Koronyo-Hamaoui M. Retinal pathological features and proteome signatures of Alzheimer's disease. Acta Neuropathol 2023; 145:409-438. [PMID: 36773106 PMCID: PMC10020290 DOI: 10.1007/s00401-023-02548-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Alzheimer's disease (AD) pathologies were discovered in the accessible neurosensory retina. However, their exact nature and topographical distribution, particularly in the early stages of functional impairment, and how they relate to disease progression in the brain remain largely unknown. To better understand the pathological features of AD in the retina, we conducted an extensive histopathological and biochemical investigation of postmortem retina and brain tissues from 86 human donors. Quantitative examination of superior and inferior temporal retinas from mild cognitive impairment (MCI) and AD patients compared to those with normal cognition (NC) revealed significant increases in amyloid β-protein (Aβ42) forms and novel intraneuronal Aβ oligomers (AβOi), which were closely associated with exacerbated retinal macrogliosis, microgliosis, and tissue atrophy. These pathologies were unevenly distributed across retinal layers and geometrical areas, with the inner layers and peripheral subregions exhibiting most pronounced accumulations in the MCI and AD versus NC retinas. While microgliosis was increased in the retina of these patients, the proportion of microglial cells engaging in Aβ uptake was reduced. Female AD patients exhibited higher levels of retinal microgliosis than males. Notably, retinal Aβ42, S100 calcium-binding protein B+ macrogliosis, and atrophy correlated with severity of brain Aβ pathology, tauopathy, and atrophy, and most retinal pathologies reflected Braak staging. All retinal biomarkers correlated with the cognitive scores, with retinal Aβ42, far-peripheral AβOi and microgliosis displaying the strongest correlations. Proteomic analysis of AD retinas revealed activation of specific inflammatory and neurodegenerative processes and inhibition of oxidative phosphorylation/mitochondrial, and photoreceptor-related pathways. This study identifies and maps retinopathy in MCI and AD patients, demonstrating the quantitative relationship with brain pathology and cognition, and may lead to reliable retinal biomarkers for noninvasive retinal screening and monitoring of AD.
Collapse
Affiliation(s)
- Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Giovanna C Regis
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Ernesto Barron
- Doheny Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Galen Cook-Wiens
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anthony R Rodriguez
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rodrigo Medeiros
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, USA
| | - Veer B Gupta
- School of Medicine, Deakin University, Victoria, Australia
| | - Andrei A Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
| | - Jennifer E Van Eyk
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA
- Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stuart L Graham
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek K Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - John M Ringman
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David R Hinton
- Departments of Pathology and Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Carol A Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Antonino Cattaneo
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Giovanni Meli
- European Brain Research Institute (EBRI), Viale Regina Elena, Rome, Italy
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
- Departments of Neurology and Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, USA.
| |
Collapse
|
23
|
Lee JH, Stefan S, Walek K, Nie J, Min K, Yang TD, Lee J. Investigating the correlation between early vascular alterations and cognitive impairment in Alzheimer's disease in mice with SD-OCT. BIOMEDICAL OPTICS EXPRESS 2023; 14:1494-1508. [PMID: 37078054 PMCID: PMC10110305 DOI: 10.1364/boe.481826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Vascular alterations have recently gained some attention with their strong association with Alzheimer's disease (AD). We conducted a label-free in vivo optical coherence tomography (OCT) longitudinal imaging using an AD mouse model. We achieved the tracking of the same individual vessels over time and conducted an in-depth analysis of temporal dynamics in vasculature and vasodynamics using OCT angiography and Doppler-OCT. The AD group showed an exponential decay in both vessel diameter and blood flow change with the critical timepoint before 20 weeks of age, which precedes cognitive decline observed at 40 weeks of age. Interestingly, for the AD group, the diameter change showed the dominance in arterioles over venules, but no such influence was found in blood flow change. Conversely, three mice groups with early vasodilatory intervention did not show any significant change in both vascular integrity and cognitive function compared to the wild-type group. We found early vascular alterations and confirmed their correlation with cognitive impairment in AD.
Collapse
Affiliation(s)
- Jang-Hoon Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Sabina Stefan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Konrad Walek
- Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jiarui Nie
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Kyounghee Min
- University of Massachusetts Chan Medical School, Worcester, Massachusetts 01655, USA
| | - Taeseok Daniel Yang
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Department of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
24
|
High-resolution magnetization-transfer imaging of post-mortem marmoset brain: Comparisons with relaxometry and histology. Neuroimage 2023; 268:119860. [PMID: 36610679 DOI: 10.1016/j.neuroimage.2023.119860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Cell membranes and macromolecules or paramagnetic compounds interact with water proton spins, which modulates magnetic resonance imaging (MRI) contrast providing information on tissue composition. For a further investigation, quantitative magnetization transfer (qMT) parameters (at 3T), including the ratio of the macromolecular and water proton pools, F, and the exchange-rate constant as well as the (observed) longitudinal and the effective transverse relaxation rates (at 3T and 7T), R1obs and R2*, respectively, were measured at high spatial resolution (200 µm) in a slice of fixed marmoset brain and compared to histology results obtained with Gallyas' myelin stain and Perls' iron stain. R1obs and R2* were linearly correlated with the iron content for the entire slice, whereas distinct differences were obtained between gray and white matter for correlations of relaxometry and qMT parameters with myelin content. The combined results suggest that the macromolecular pool interacting with water consists of myelin and (less efficient) non-myelin contributions. Despite strong correlation of F and R1obs, none of these parameters was uniquely specific to myelination. Due to additional sensitivity to iron stores, R1obs and R2* were more sensitive for depicting microstructural differences between cortical layers than F.
Collapse
|
25
|
Tetlow AM, Jackman BM, Alhadidy MM, Perumal V, Morgan DG, Gordon MN. Influence of Host Age on Intracranial AAV9 TauP301L Induced Tauopathy. J Alzheimers Dis 2023; 93:365-378. [PMID: 36970910 PMCID: PMC10540220 DOI: 10.3233/jad-221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Advanced age is the greatest risk factor for the development of Alzheimer's disease (AD). This implies that some aspect of the aged milieu is possibly accelerating the development of AD related pathologies. OBJECTIVE We hypothesized that intracranially injected with AAV9 tauP301L may cause a greater degree of pathology in old versus young mice. METHODS Animals were injected with viral vectors overexpressing the mutant tauP301L or control protein (green fluorescent protein, GFP) into the brains of mature, middle-aged, and old C57BL/6Nia mice. The tauopathy phenotype was monitored four months after injection using behavioral, histological, and neurochemical measures. RESULTS Phosphorylated-tau immunostaining (AT8) or Gallyas staining of aggregated tau increased with age, but other measures of tau accumulation were not significantly affected. Overall, AAV-tau injected mice had impaired radial arm water maze performance, increased microglial activation, and showed evidence of hippocampal atrophy. Aging impaired open field and rotarod performance in both AAV-tau and control mice. The efficiency of viral transduction and gene expression were the same at all animal ages. CONCLUSION We conclude that tauP301L over expression results in a tauopathy phenotype with memory impairment and accumulation of aggregated tau. However, the effects of aging on this phenotype are modest and not detected by some markers of tau accumulation, similar to prior work on this topic. Thus, although age does influence the development of tauopathy, it is likely that other factors, such as ability to compensate for tau pathology, are more responsible for the increased risk of AD with advanced age.
Collapse
Affiliation(s)
- Amber M. Tetlow
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- School of Aging Studies, University of South Florida, Tampa, FL, USA
- Neuroscience Institute, Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Brianna M. Jackman
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Mohammed M. Alhadidy
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Varshini Perumal
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - David G. Morgan
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| | - Marcia N. Gordon
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
26
|
Wallace MN, Zobay O, Hardman E, Thompson Z, Dobbs P, Chakrabarti L, Palmer AR. The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity. Front Neuroanat 2022; 16:1034264. [PMID: 36439196 PMCID: PMC9681811 DOI: 10.3389/fnana.2022.1034264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Minicolumns are thought to be a fundamental neural unit in the neocortex and their replication may have formed the basis of the rapid cortical expansion that occurred during primate evolution. We sought evidence of minicolumns in the primary visual cortex (V-1) of three great apes, three rodents and representatives from three other mammalian orders: Eulipotyphla (European hedgehog), Artiodactyla (domestic pig) and Carnivora (ferret). Minicolumns, identified by the presence of a long bundle of radial, myelinated fibers stretching from layer III to the white matter of silver-stained sections, were found in the human, chimpanzee, gorilla and guinea pig V-1. Shorter bundles confined to one or two layers were found in the other species but represent modules rather than minicolumns. The inter-bundle distance, and hence density of minicolumns, varied systematically both within a local area that might represent a hypercolumn but also across the whole visual field. The distance between all bundles had a similar range for human, chimpanzee, gorilla, ferret and guinea pig: most bundles were 20-45 μm apart. By contrast, the space between bundles was greater for the hedgehog and pig (20-140 μm). The mean density of minicolumns was greater in tangential sections of the gorilla and chimpanzee (1,243-1,287 bundles/mm2) than in human (314-422 bundles/mm2) or guinea pig (643 bundles/mm2). The minicolumnar bundles did not form a hexagonal lattice but were arranged in thin curving and branched bands separated by thicker bands of neuropil/somata. Estimates of the total number of modules/minicolumns within V-1 were strongly correlated with visual acuity.
Collapse
Affiliation(s)
- Mark N. Wallace
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Zobay
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- School of Medicine, University of Nottingham, Hearing Sciences—Scottish Section, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Eden Hardman
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
| | - Phillipa Dobbs
- Veterinary Department, Twycross Zoo, East Midland Zoological Society, Atherstone, United Kingdom
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham, United Kingdom
| | - Alan R. Palmer
- Medical Research Council (MRC) Institute of Hearing Research, University Park, Nottingham, United Kingdom
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Piavchenko G, Soldatov V, Venediktov A, Kartashkina N, Novikova N, Gorbunova M, Boronikhina T, Yatskovskiy A, Meglinski I, Kuznetsov S. A combined use of silver pretreatment and impregnation with consequent Nissl staining for cortex and striatum architectonics study. Front Neuroanat 2022; 16:940993. [PMID: 36312299 PMCID: PMC9615244 DOI: 10.3389/fnana.2022.940993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022] Open
Abstract
Despite a rapid growth in the application of modern techniques for visualization studies in life sciences, the classical methods of histological examination are yet to be outdated. Herein, we introduce a new approach that involves combining silver nitrate pretreatment and impregnation with consequent Nissl (cresyl violet) staining for cortex and striatum architectonics study on the same microscopy slide. The developed approach of hybrid staining provides a high-quality visualization of cellular and subcellular structures, including impregnated neurons (about 10%), Nissl-stained neurons (all the remaining ones), and astrocytes, as well as chromatophilic substances, nucleoli, and neuropil in paraffin sections. We provide a comparative study of the neuronal architectonics in both the motor cortex and striatum based on the differences in their tinctorial properties. In addition to a comparative study of the neuronal architectonics in both the motor cortex and striatum, the traditional methods to stain the cortex (motor and piriform) and the striatum are considered. The proposed staining approach compiles the routine conventional methods for thin sections, expanding avenues for more advanced examination of neurons, blood-brain barrier components, and fibers both under normal and pathological conditions. One of the main hallmarks of our method is the ability to detect changes in the number of glial cells. The results of astrocyte visualization in the motor cortex obtained by the developed technique agree well with the alternative studies by glial fibrillary acidic protein (GFAP) immunohistochemical reaction. The presented approach of combined staining has great potential in current histological practice, in particular for the evaluation of several neurological disorders in clinical, pre-clinical, or neurobiological animal studies.
Collapse
Affiliation(s)
- Gennadii Piavchenko
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladislav Soldatov
- Department of Pharmacology and Clinical Pharmacology, Belgorod National Research University, Belgorod, Russia
| | - Artem Venediktov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Kartashkina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia Novikova
- Laboratory of Pathophysiology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Marina Gorbunova
- Department of Histology, Cytology, and Embryology, Orel State University named after I.S. Turgenev, Orel, Russia
| | - Tatiana Boronikhina
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Yatskovskiy
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Igor Meglinski
- Opto-Electronics and Measurement Techniques, Faculty of Information and Electrical Engineering, University of Oulu, Oulu, Finland
- College of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
| | - Sergey Kuznetsov
- Department of Histology, Cytology, and Embryology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
28
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
30
|
Permanne B, Sand A, Ousson S, Nény M, Hantson J, Schubert R, Wiessner C, Quattropani A, Beher D. O-GlcNAcase Inhibitor ASN90 is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem Neurosci 2022; 13:1296-1314. [PMID: 35357812 PMCID: PMC9026285 DOI: 10.1021/acschemneuro.2c00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by the intracellular formation of insoluble and toxic protein aggregates in the brain that are closely linked to disease progression. In Alzheimer's disease and in rare tauopathies, aggregation of the microtubule-associated tau protein leads to the formation of neurofibrillary tangles (NFT). In Parkinson's disease (PD) and other α-synucleinopathies, intracellular Lewy bodies containing aggregates of α-synuclein constitute the pathological hallmark. Inhibition of the glycoside hydrolase O-GlcNAcase (OGA) prevents the removal of O-linked N-acetyl-d-glucosamine (O-GlcNAc) moieties from intracellular proteins and has emerged as an attractive therapeutic approach to prevent the formation of tau pathology. Like tau, α-synuclein is known to be modified with O-GlcNAc moieties and in vitro these have been shown to prevent its aggregation and toxicity. Here, we report the preclinical discovery and development of a novel small molecule OGA inhibitor, ASN90. Consistent with the substantial exposure of the drug and demonstrating target engagement in the brain, the clinical OGA inhibitor ASN90 promoted the O-GlcNAcylation of tau and α-synuclein in brains of transgenic mice after daily oral dosing. Across human tauopathy mouse models, oral administration of ASN90 prevented the development of tau pathology (NFT formation), functional deficits in motor behavior and breathing, and increased survival. In addition, ASN90 slowed the progression of motor impairment and reduced astrogliosis in a frequently utilized α-synuclein-dependent preclinical rodent model of PD. These findings provide a strong rationale for the development of OGA inhibitors as disease-modifying agents in both tauopathies and α-synucleinopathies. Since tau and α-synuclein pathologies frequently co-exist in neurodegenerative diseases, OGA inhibitors represent unique, multimodal drug candidates for further clinical development.
Collapse
Affiliation(s)
- Bruno Permanne
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Astrid Sand
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Solenne Ousson
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Maud Nény
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Jennifer Hantson
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Ryan Schubert
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Christoph Wiessner
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Anna Quattropani
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| | - Dirk Beher
- Asceneuron S.A., EPFL Innovation Park, Bâtiment B, CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Advances in Visualizing Microglial Cells in Human Central Nervous System Tissue. Biomolecules 2022; 12:biom12050603. [PMID: 35625531 PMCID: PMC9138569 DOI: 10.3390/biom12050603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation has recently been identified as a fundamentally important pathological process in most, if not all, CNS diseases. The main contributor to neuroinflammation is the microglia, which constitute the innate immune response system. Accurate identification of microglia and their reactivity state is therefore essential to further our understanding of CNS pathophysiology. Many staining techniques have been used to visualise microglia in rodent and human tissue, and immunostaining is currently the most frequently used. Historically, identification of microglia was predominantly based on morphological structure, however, recently there has been a reliance on selective antigen expression, and microglia-specific markers have been identified providing increased certainty that the cells observed are in fact microglia, rather than the similar yet distinct macrophages. To date, the most microglia-specific markers are P2Y12 and TMEM119. However, other microglia-related markers can also be useful for demonstrating activation state, phagocytic state, and for neuroimaging purposes in longitudinal studies. Overall, it is important to be aware of the microglia-selectivity issues of the various stains and immunomarkers used by researchers to distinguish microglia in CNS tissue to avoid misinterpretation.
Collapse
|
32
|
Xu G, Ulm BS, Howard J, Fromholt SE, Lu Q, Lee BB, Walker A, Borchelt DR, Lewis J. TAPPing into the potential of inducible tau/APP transgenic mice. Neuropathol Appl Neurobiol 2022; 48:e12791. [PMID: 35067965 DOI: 10.1111/nan.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
AIMS Our understanding of the pathological interactions between amyloidosis and tauopathy in Alzheimer's disease is incomplete. We sought to determine if the relative timing of the amyloidosis and tauopathy is critical for amyloid-enhanced tauopathy. METHODS We crossed an inducible tauopathy model with two β-amyloid models utilising the doxycycline-repressible transgenic system to modulate timing and duration of human tau expression in the context of amyloidosis and then assessed tauopathy, amyloidosis and gliosis. RESULTS We combined inducible rTg4510 tau with APPswe/PS1dE9 [Line 85 (L85)] mice to examine the interactions between Aβ and tauopathy at different stages of amyloidosis. When we initially suppressed mutant human tau expression for 14-15 months and subsequently induced tau expression for 6 months, severe amyloidosis with robust tauopathy resulted in rTg4510/L85 but not rTg4510 mice. When we suppressed mutant tau for 7 months before inducing expression for a subsequent 6 months in another cohort of rTg4510/L85 and rTg4510 mice, only rTg4510/L85 mice displayed robust tauopathy. Lastly, we crossed rTg4510 mice to tet-regulated APPswe/ind [Line 107 (L107)] mice, using doxycycline to initially suppress both transgenes for 1 month before inducing expression for 5 months to model early amyloidosis. In contrast to rTg4510, rTg4510/L107 mice rapidly developed amyloidosis, accompanied by robust tauopathy. CONCLUSIONS These data suggest that tau misfolding is exacerbated by both newly forming Aβ deposits in younger brain and mature deposits in older brains. Refined use and repurposing of these models provide new tools to explore the intersection of ageing, amyloid and tauopathy and to test interventions to disrupt the amyloid cascade.
Collapse
Affiliation(s)
- Guilian Xu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Brittany S Ulm
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Susan E Fromholt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Qing Lu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
| | - Brian Benedict Lee
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- SantaFe HealthCare Alzheimer's Disease Research Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Jackson TC, Herrmann JR, Garman RH, Kang RD, Vagni VA, Gorse K, Janesko-Feldman K, Stezoski J, Kochanek PM. Hypoxia-ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr Res 2022:10.1038/s41390-022-01990-4. [PMID: 35184138 PMCID: PMC9388702 DOI: 10.1038/s41390-022-01990-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Neonates have high levels of cold-shock proteins (CSPs) in the normothermic brain for a limited period following birth. Hypoxic-ischemic (HI) insults in term infants produce neonatal encephalopathy (NE), and it remains unclear whether HI-induced pathology alters baseline CSP expression in the normothermic brain. METHODS Here we established a version of the Rice-Vannucci model in PND 10 mice that incorporates rigorous temperature control. RESULTS Common carotid artery (CCA)-ligation plus 25 min hypoxia (8% O2) in pups with targeted normothermia resulted in classic histopathological changes including increased hippocampal degeneration, astrogliosis, microgliosis, white matter changes, and cell signaling perturbations. Serial assessment of cortical, thalamic, and hippocampal RNA-binding motif 3 (RBM3), cold-inducible RNA binding protein (CIRBP), and reticulon-3 (RTN3) revealed a rapid age-dependent decrease in levels in sham and injured pups. CSPs were minimally affected by HI and the age point of lowest expression (PND 18) coincided with the timing at which heat-generating mechanisms mature in mice. CONCLUSIONS The findings suggest the need to determine whether optimized therapeutic hypothermia (depth and duration) can prevent the age-related decline in neuroprotective CSPs like RBM3 in the brain, and improve outcomes during critical phases of secondary injury and recovery after NE. IMPACT The rapid decrease in endogenous neuroprotective cold-shock proteins (CSPs) in the normothermic cortex, thalamus, and hippocampus from postnatal day (PND) 11-18, coincides with the timing of thermogenesis maturation in neonatal mice. Hypoxia-ischemia (HI) has a minor impact on the normal age-dependent decline in brain CSP levels in neonates maintained normothermic post-injury. HI robustly disrupts the expected correlation in RNA-binding motif 3 (RBM3) and reticulon-3 (RTN3). The potent neuroprotectant RBM3 is not increased 1-4 days after HI in a mouse model of neonatal encephalopathy (NE) in the term newborn and in which rigorous temperature control prevents the manifestation of endogenous post-insult hypothermia.
Collapse
Affiliation(s)
- Travis C Jackson
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA.
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA.
| | - Jeremy R Herrmann
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Robert H Garman
- Division of Neuropathology, University of Pittsburgh, 3550 Terrrace Street, Pittsburgh, PA, 15261, USA
| | - Richard D Kang
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA
| | - Vincent A Vagni
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Kiersten Gorse
- University of South Florida Morsani College of Medicine, USF Health Heart Institute, MDD 0630, 560 Channelside Drive, Tampa, FL, 33602, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL, 33612-4799, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Rangos Research Center-6th floor, Pittsburgh, PA, 15224, USA
| |
Collapse
|
34
|
Shakir MN, Dugger BN. Advances in Deep Neuropathological Phenotyping of Alzheimer Disease: Past, Present, and Future. J Neuropathol Exp Neurol 2022; 81:2-15. [PMID: 34981115 PMCID: PMC8825756 DOI: 10.1093/jnen/nlab122] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized pathologically by the presence of neurofibrillary tangles and amyloid beta (Aβ) plaques in the brain. The disease was first described in 1906 by Alois Alzheimer, and since then, there have been many advancements in technologies that have aided in unlocking the secrets of this devastating disease. Such advancements include improving microscopy and staining techniques, refining diagnostic criteria for the disease, and increased appreciation for disease heterogeneity both in neuroanatomic location of abnormalities as well as overlap with other brain diseases; for example, Lewy body disease and vascular dementia. Despite numerous advancements, there is still much to achieve as there is not a cure for AD and postmortem histological analyses is still the gold standard for appreciating AD neuropathologic changes. Recent technological advances such as in-vivo biomarkers and machine learning algorithms permit great strides in disease understanding, and pave the way for potential new therapies and precision medicine approaches. Here, we review the history of human AD neuropathology research to include the notable advancements in understanding common co-pathologies in the setting of AD, and microscopy and staining methods. We also discuss future approaches with a specific focus on deep phenotyping using machine learning.
Collapse
Affiliation(s)
- Mustafa N Shakir
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| | - Brittany N Dugger
- From the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA (MNS, BND)
| |
Collapse
|
35
|
Coughlin DG, Dryden I, Goodwill VS, Pizzo DP, Wright B, Lessig S, Galasko D, MacKenzie IR, Hiniker A. Long-standing multiple system atrophy-Parkinsonism with limbic and FTLD-type α-synuclein pathology. Neuropathol Appl Neurobiol 2021; 48:e12783. [PMID: 34847258 PMCID: PMC9097824 DOI: 10.1111/nan.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 11/30/2022]
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ian Dryden
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Vanessa S Goodwill
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Brenton Wright
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephanie Lessig
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Ian R MacKenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Annie Hiniker
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Yan Y, Gao Y, Fang Q, Zhang N, Kumar G, Yan H, Song L, Li J, Zhang Y, Sun J, Wang J, Zhao L, Skaggs K, Zhang HT, Ma CG. Inhibition of Rho Kinase by Fasudil Ameliorates Cognition Impairment in APP/PS1 Transgenic Mice via Modulation of Gut Microbiota and Metabolites. Front Aging Neurosci 2021; 13:755164. [PMID: 34721000 PMCID: PMC8551711 DOI: 10.3389/fnagi.2021.755164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Fasudil, a Rho kinase inhibitor, exerts therapeutic effects in a mouse model of Alzheimer's disease (AD), a chronic neurodegenerative disease with progressive loss of memory. However, the mechanisms remain unclear. In addition, the gut microbiota and its metabolites have been implicated in AD. Methods: We examined the effect of fasudil on learning and memory using the Morris water-maze (MWM) test in APPswe/PSEN1dE9 transgenic (APP/PS1) mice (8 months old) treated (i.p.) with fasudil (25 mg/kg/day; ADF) or saline (ADNS) and in age- and gender-matched wild-type (WT) mice. Fecal metagenomics and metabolites were performed to identify novel biomarkers of AD and elucidate the mechanisms of fasudil induced beneficial effects in AD mice. Results: The MWM test showed significant improvement of spatial memory in APP/PS1 mice treated with fasudil as compared to ADNS. The metagenomic analysis revealed the abundance of the dominant phyla in all the three groups, including Bacteroidetes (23.7–44%) and Firmicutes (6.4–26.6%), and the increased relative abundance ratio of Firmicutes/Bacteroidetes in ADNS (59.1%) compared to WT (31.7%). In contrast, the Firmicutes/Bacteroidetes ratio was decreased to the WT level in ADF (32.8%). Lefse analysis of metagenomics identified s_Prevotella_sp_CAG873 as an ADF potential biomarker, while s_Helicobacter_typhlonius and s_Helicobacter_sp_MIT_03-1616 as ADNS potential biomarkers. Metabolite analysis revealed the increment of various metabolites, including glutamate, hypoxanthine, thymine, hexanoyl-CoA, and leukotriene, which were relative to ADNS or ADF microbiota potential biomarkers and mainly involved in the metabolism of nucleotide, lipids and sugars, and the inflammatory pathway. Conclusions: Memory deficit in APP/PS1 mice was correlated with the gut microbiome and metabolite status. Fasudil reversed the abnormal gut microbiota and subsequently regulated the related metabolisms to normal in the AD mice. It is believed that fasudil can be a novel strategy for the treatment of AD via remodeling of the gut microbiota and metabolites. The novel results also provide valuable references for the use of gut microbiota and metabolites as diagnostic biomarkers and/or therapeutic targets in clinical studies of AD.
Collapse
Affiliation(s)
- Yuqing Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Ye Gao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Qingli Fang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Hailong Yan
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehui Li
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Yuna Zhang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jingxian Sun
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Jiawei Wang
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Linhu Zhao
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China
| | - Keith Skaggs
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Cun-Gen Ma
- Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Institute of Brain Science, Medical School of Shanxi Datong University, Datong, China.,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
37
|
Ozaki K, Irioka T, Uchihara T, Yamada A, Nakamura A, Majima T, Igarashi S, Shintaku H, Yakeishi M, Tsuura Y, Okazaki Y, Ishikawa K, Yokota T. Neuropathology of SCA34 showing widespread oligodendroglial pathology with vacuolar white matter degeneration: a case study. Acta Neuropathol Commun 2021; 9:172. [PMID: 34689836 PMCID: PMC8543940 DOI: 10.1186/s40478-021-01272-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Spinocerebellar ataxia type 34 (SCA34) is an autosomal dominant inherited ataxia due to mutations in ELOVL4, which encodes one of the very long-chain fatty acid elongases. SCA38, another spinocerebellar ataxia, is caused by mutations in ELOVL5, a gene encoding another elongase. However, there have been no previous studies describing the neuropathology of either SCA34 or 38. This report describes the neuropathological findings of an 83-year-old man with SCA34 carrying a pathological ELOVL4 mutation (NM_022726, c.736T>G, p.W246G). Macroscopic findings include atrophies in the pontine base, cerebellum, and cerebral cortices. Microscopically, marked neuronal and pontocerebellar fiber loss was observed in the pontine base. In addition, in the pontine base, accumulation of CD68-positive macrophages laden with periodic acid-Schiff (PAS)-positive material was observed. Many vacuolar lesions were found in the white matter of the cerebral hemispheres and, to a lesser extent, in the brainstem and spinal cord white matter. Immunohistological examination and ultrastructural observations with an electron microscope suggest that these vacuolar lesions are remnants of degenerated oligodendrocytes. Electron microscopy also revealed myelin sheath destruction. Unexpectedly, aggregation of the four-repeat tau was observed in a spatial pattern reminiscent of progressive supranuclear palsy. The tau lesions included glial fibrillary tangles resembling tuft-shaped astrocytes and neurofibrillary tangles and pretangles. This is the first report to illustrate that a heterozygous missense mutation in ELOVL4 leads to neuronal loss accompanied by macrophages laden with PAS-positive material in the pontine base and oligodendroglial degeneration leading to widespread vacuoles in the white matter in SCA34.
Collapse
|
38
|
Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study. Diagnostics (Basel) 2021; 11:diagnostics11101874. [PMID: 34679572 PMCID: PMC8535097 DOI: 10.3390/diagnostics11101874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Several common and debilitating neurodegenerative disorders are characterized by the intracellular accumulation of neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated tau protein. In Alzheimer's disease (AD), NFTs are accompanied by extracellular amyloid-beta (Aβ), but primary tauopathy disorders are marked by the accumulation of tau protein alone, including forms of frontotemporal dementia (FTD), corticobasal degeneration (CBD), and progressive supranuclear palsy (PSP), among others. 18F-THK5351 has been reported to bind pathological tau as well as associated reactive astrogliosis. The goal of this study was to validate the ability of the PET tracer 18F-THK5351 to detect early changes in tau-related pathology and its relation to other pathological hallmarks. We demonstrated elevated in vivo 18F-THK5351 PET signaling over time in transgenic P301S tau mice from 8 months that had a positive correlation with histological and biochemical tau changes, as well as motor, memory, and learning impairment. This study indicates that 18F-THK5351 may help fill a critical need to develop PET imaging tracers that detect aberrant tau aggregation and related neuropathology in order to diagnose the onset of tauopathies, gain insights into their underlying pathophysiologies, and to have a reliable biomarker to follow during treatment trials.
Collapse
|
39
|
Stopschinski BE, Del Tredici K, Estill-Terpack SJ, Ghebremedhin E, Yu FF, Braak H, Diamond MI. Anatomic survey of seeding in Alzheimer's disease brains reveals unexpected patterns. Acta Neuropathol Commun 2021; 9:164. [PMID: 34635189 PMCID: PMC8507321 DOI: 10.1186/s40478-021-01255-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are heterogeneous neurodegenerative diseases defined by progressive brain accumulation of tau aggregates. The most common tauopathy, sporadic Alzheimer's disease (AD), involves progressive tau deposition that can be divided into specific stages of neurofibrillary tangle pathology. This classification is consistent with experimental data which suggests that network-based propagation is mediated by cell-cell transfer of tau "seeds", or assemblies, that serve as templates for their own replication. Until now, seeding assays of AD brain have largely been limited to areas previously defined by NFT pathology. We now expand this work to additional regions. We selected 20 individuals with AD pathology of NFT stages I, III, and V. We stained and classified 25 brain regions in each using the anti-phospho-tau monoclonal antibody AT8. We measured tau seeding in each of the 500 samples using a cell-based tau "biosensor" assay in which induction of intracellular tau aggregation is mediated by exogenous tau assemblies. We observed a progressive increase in tau seeding according to NFT stage. Seeding frequently preceded NFT pathology, e.g., in the basolateral subnucleus of the amygdala and the substantia nigra, pars compacta. We observed seeding in brain regions not previously known to develop tau pathology, e.g., the globus pallidus and internal capsule, where AT8 staining revealed mainly axonal accumulation of tau. AT8 staining in brain regions identified because of tau seeding also revealed pathology in a previously undescribed cell type: Bergmann glia of the cerebellar cortex. We also detected tau seeding in brain regions not previously examined, e.g., the intermediate reticular zone, dorsal raphe nucleus, amygdala, basal nucleus of Meynert, and olfactory bulb. In conclusion, tau histopathology and seeding are complementary analytical tools. Tau seeding assays reveal pathology in the absence of AT8 signal in some instances, and previously unrecognized sites of tau deposition. The variation in sites of seeding between individuals could underlie differences in the clinical presentation and course of AD.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | | | - Fang F Yu
- Department for Radiology, Neuroradiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heiko Braak
- Clinical Neuroanatomy Section/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
40
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|
41
|
Hosokawa M, Masuda-Suzukake M, Shitara H, Shimozawa A, Suzuki G, Kondo H, Nonaka T, Campbell W, Arai T, Hasegawa M. Development of a novel tau propagation mouse model endogenously expressing 3 and 4 repeat tau isoforms. Brain 2021; 145:349-361. [PMID: 34515757 DOI: 10.1093/brain/awab289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
The phenomenon of "prion-like propagation" in which aggregates of abnormal amyloid-fibrilized protein propagate between neurons and spread pathology, is attracting attention as a new mechanism in neurodegenerative diseases. There is a strong correlation between the accumulation or spread of abnormal tau aggregates and the clinical symptoms of tauopathies. Microtubule-associated protein of tau contains a microtubule-binding domain which consists of 3-repeats or 4-repeats due to alternative mRNA splicing of transcripts for the Microtubule-associated protein of tau gene. Although a number of models for tau propagation have been reported, most utilize 4-repeat human tau transgenic mice or adult wild-type mice expressing only endogenous 4-repeat tau and these models have not been able to reproduce the pathology of Alzheimer's disease in which 3-repeat and 4-repeat tau accumulate simultaneously, or that of Pick's disease in which only 3-repeat tau is aggregated. These deficiencies may reflect differences between human and rodent tau isoforms in the brain. To overcome this problem, we used genome editing techniques to generate mice that express an equal ratio of endogenous 3-repeat and 4-repeat tau, even after they become adults. We injected these mice with sarkosyl-insoluble fractions derived from the brains of human tauopathy patients such as those afflicted with Alzheimer's disease (3- and 4-repeat tauopathy), corticobasal degeneration (4-repeat tauopathy) or Pick's disease (3-repeat tauopathy). At 8-9 months following intracerebral injection of mice, histopathological and biochemical analyses revealed that the abnormal accumulation of tau was seed-dependent, with 3- and 4-repeat tau in Alzheimer's disease-injected brains, 4-repeat tau only in corticobasal degeneration-injected brains, and 3-repeat tau only in Pick disease-injected brains, all of which contained isoforms related to those found in the injected seeds. The injected abnormal tau was seeded, and accumulated at the site of injection and at neural connections, predominantly within the same site. The abnormal tau newly accumulated was found to be endogenous in these mice and to have crossed the species barrier. Of particular importance, Pick's body-like inclusions were observed in Pick's disease-injected mice, and accumulations characteristic of Pick's disease were reproduced, suggesting that we have developed the first model that recapitulates the pathology of Pick's disease. These models are not only useful for elucidating the mechanism of propagation of tau pathology involving both 3- and 4-repeat-isoforms, but can also reproduce the pathology of tauopathies, which should lead to the discovery of new therapeutic agents.
Collapse
Affiliation(s)
- Masato Hosokawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masami Masuda-Suzukake
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Aki Shimozawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Genjiro Suzuki
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiromi Kondo
- Histology Center, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - William Campbell
- Telarray Diagnostics, 3800 Wesbrook Mall, Vancouver, BC V6S 2L9 Canada
| | - Tetsuaki Arai
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Department of Neuropsychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba. 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8576 Japan
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science. 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
42
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
43
|
Ertekin A, Atay E, Bozkurt E, Aslan E. Effect of buscopan, a compound that alleviates cramps, on the developing nervous system of the chick embryo. Birth Defects Res 2021; 113:1140-1151. [PMID: 34050726 DOI: 10.1002/bdr2.1929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Buscopan is used to treat stomach cramps including those resulting from irritable bowel syndrome, bladder cramps, and pain related to menstruation. Its pregnancy category is determined as C. It has been shown in experimental animal studies that the drug has a negative effect on the embryo, but sufficient and well-controlled studies have not been conducted in humans. The aim of this study is to investigate effects of buscopan on the development of the neural tube (NT) in chick embryos. METHODS Sixty specific pathogen-free (SPF) fertilized eggs were used. SPF eggs were placed in an incubator and divided into six groups at 28 hr of incubation. Five different doses (low to high) of buscopan were injected sub-blastodermally. At the end of 48 hr, the embryos were evaluated morphologically and histopathologically. The argyrophilic nucleolar-organizing region (AgNOR) method was used in this study to determine the proliferation activity of cells in NT development in chick embryos. AgNOR number and total AgNOR area/nuclear area (TAA/NA) were detected for each embryo. RESULTS Depending on the dose, the embryo's crown-rump length and somite number decreased (p < .05). Significant differences were detected among all groups for mean AgNOR number (p < .05) and TAA/NA ratio (p < .05). CONCLUSIONS Considering the average count of AgNOR cells and TAA/NA ratio, it was found that there was a decrease in cell division depending on the dose. It was determined that buscopan treatment on chick embryos adversely affected early nervous system and NT development.
Collapse
Affiliation(s)
- Ayşe Ertekin
- Department of Emergency Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Erhan Bozkurt
- Department of Internal Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Esra Aslan
- Department of Histology Embryology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
44
|
Quintana D, Ren X, Hu H, Corbin D, Engler-Chiurazzi E, Alvi M, Simpkins J. IL-1β Antibody Protects Brain from Neuropathology of Hypoperfusion. Cells 2021; 10:855. [PMID: 33918659 PMCID: PMC8069995 DOI: 10.3390/cells10040855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic brain hypoperfusion is the primary cause of vascular dementia and has been implicated in the development of white matter disease and lacunar infarcts. Cerebral hypoperfusion leads to a chronic state of brain inflammation with immune cell activation and production of pro-inflammatory cytokines, including IL-1β. In the present study, we induced chronic, progressive brain hypoperfusion in mice using ameroid constrictor, arterial stenosis (ACAS) surgery and tested the efficacy of an IL-1β antibody on the resulting brain damage. We observed that ACAS surgery causes a reduction in cerebral blood flow (CBF) of about 30% and grey and white matter damage in and around the hippocampus. The IL-1β antibody treatment did not significantly affect CBF but largely eliminated grey matter damage and reduced white matter damage caused by ACAS surgery. Over the course of hypoperfusion/injury, grip strength, coordination, and memory-related behavior were not significantly affected by ACAS surgery or antibody treatment. We conclude that antibody neutralization of IL-1β is protective from the brain damage caused by chronic, progressive brain hypoperfusion.
Collapse
Affiliation(s)
- Dominic Quintana
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Xuefang Ren
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Heng Hu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Deborah Corbin
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Elizabeth Engler-Chiurazzi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
| | - Muhammad Alvi
- Center for Basic and Translational Stroke Research, Department of Neurology, Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - James Simpkins
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (D.Q.); (X.R.); (H.H.); (D.C.); (E.E.-C.)
- Center for Basic and Translational Stroke Research, Department of Neurology, Rockefeller Neuroscience Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
45
|
Bengoa-Vergniory N, Velentza-Almpani E, Silva AM, Scott C, Vargas-Caballero M, Sastre M, Wade-Martins R, Alegre-Abarrategui J. Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathol Commun 2021; 9:18. [PMID: 33509301 PMCID: PMC7844979 DOI: 10.1186/s40478-020-01117-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multimerization is a key process in prion-like disorders such as Alzheimer's disease (AD), since it is a requirement for self-templating tau and beta-amyloid amyloidogenesis. AT8-immunohistochemistry for hyperphosphorylated tau is currently used for the diagnosis and staging of tau pathology. Given that tau-tau interactions can occur in the absence of hyperphosphorylation or other post-translational modifications (PTMs), the direct visualization of tau multimerization could uncover early pathological tau multimers. METHODS Here, we used bimolecular fluorescent complementation, rapamycin-dependent FKBP/FRB-tau interaction and transmission electron microscopy to prove the in vitro specificity of tau-proximity ligation assay (tau-PLA). We then analyzed MAPT KO and P301S transgenic mice, and human hippocampus and temporal isocortex of all Braak stages with tau-PLA and compared it with immunohistochemistry for the diagnostic antibody AT8, the early phosphorylation-dependent AT180, and the conformational-dependent antibody MC1. Finally, we performed proteinase-K treatment to infer the content of amyloidogenic beta-sheet fold. RESULTS Our novel tau-proximity ligation assay (tau-PLA) directly visualized tau-tau interactions in situ, and exclusively recognized tau multimers but not monomers. It elicited no signal in MAPT KO mouse brains, but extensively labelled P301S transgenic mice and AD brain. Two groups of structures were detected, a previously unreported widespread small-sized diffuse pathology and large, neurofibrillary-like lesions. Tau-PLA-labelled diffuse pathology appeared from the earliest Braak stages, mostly unaccompanied by tangle-like tau-immunohistochemistry, being significantly more sensitive than any small-sized dot-/thread-like pathology labelled by AT180-, AT8- and MC1-immunohistochemistry in most regions quantified at stages 0-II. Tau-PLA-labelled diffuse pathology was extremely sensitive to Proteinase-K, in contrast to large lesions. CONCLUSIONS Tau-PLA is the first method to directly visualize tau multimers both in vitro and in situ with high specificity. We find that tau multimerization appears extensively from the earliest presymptomatic Braak stages as a previously unreported type of diffuse pathology. Importantly, in our study multimerization is the earliest detectable molecular event of AD tau pathology. Our findings open a new window to the study of early tau pathology, with potential implications in early diagnosis and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | | - Ana Maria Silva
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Medical Research Council Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, Armstrong Road, London, SW7 2AZ UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 1, West Wing, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
- Oxford Parkinson’s Disease Centre, University of Oxford, South Parks Road, Oxford, OX1 3QX UK
| | | |
Collapse
|
46
|
Tran HT, Tsai EHR, Lewis AJ, Moors T, Bol JGJM, Rostami I, Diaz A, Jonker AJ, Guizar-Sicairos M, Raabe J, Stahlberg H, van de Berg WDJ, Holler M, Shahmoradian SH. Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography. Front Neurosci 2020; 14:570019. [PMID: 33324142 PMCID: PMC7724048 DOI: 10.3389/fnins.2020.570019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.
Collapse
Affiliation(s)
| | | | - Amanda J. Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. G. J. M. Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Allert J. Jonker
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joerg Raabe
- Paul Scherrer Institut, Villigen, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
47
|
CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis 2020; 11:904. [PMID: 33097690 PMCID: PMC7584629 DOI: 10.1038/s41419-020-03084-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Microglia serve as the innate immune cells of the central nervous system (CNS) by providing continuous surveillance of the CNS microenvironment and initiating defense mechanisms to protect CNS tissue. Upon injury, microglia transition into an activated state altering their transcriptional profile, transforming their morphology, and producing pro-inflammatory cytokines. These activated microglia initially serve a beneficial role, but their continued activation drives neuroinflammation and neurodegeneration. Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, and activated microglia and macrophages play a significant role in mediating disease pathophysiology and progression. Colony-stimulating factor-1 receptor (CSF1R) and its ligand CSF1 are elevated in CNS tissue derived from MS patients. We performed a large-scale RNA-sequencing experiment and identified CSF1R as a key node of disease progression in a mouse model of progressive MS. We hypothesized that modulating microglia and infiltrating macrophages through the inhibition of CSF1R will attenuate deleterious CNS inflammation and reduce subsequent demyelination and neurodegeneration. To test this hypothesis, we generated a novel potent and selective small-molecule CSF1R inhibitor (sCSF1Rinh) for preclinical testing. sCSF1Rinh blocked receptor phosphorylation and downstream signaling in both microglia and macrophages and altered cellular functions including proliferation, survival, and cytokine production. In vivo, CSF1R inhibition with sCSF1Rinh attenuated neuroinflammation and reduced microglial proliferation in a murine acute LPS model. Furthermore, the sCSF1Rinh attenuated a disease-associated microglial phenotype and blocked both axonal damage and neurological impairments in an experimental autoimmune encephalomyelitis (EAE) model of MS. While previous studies have focused on microglial depletion following CSF1R inhibition, our data clearly show that signaling downstream of this receptor can be beneficially modulated in the context of CNS injury. Together, these data suggest that CSF1R inhibition can reduce deleterious microglial proliferation and modulate microglial phenotypes during neuroinflammatory pathogenesis, particularly in progressive MS.
Collapse
|
48
|
Uchihara T. Neurofibrillary changes undergoing morphological and biochemical changes – How does tau with the profile shift of from four repeat to three repeat spread in Alzheimer brain? Neuropathology 2020; 40:450-459. [DOI: 10.1111/neup.12669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Toshiki Uchihara
- Neurology Clinic with Neuromorphomics Laboratory Nitobe‐Memorial, Nakano General Hospital Nakano Tokyo Japan
- Department of Neurology and Neurological Science Tokyo Medical and Dental University Tokyo Japan
| |
Collapse
|
49
|
Masuda-Suzukake M, Suzuki G, Hosokawa M, Nonaka T, Goedert M, Hasegawa M. Dextran sulphate-induced tau assemblies cause endogenous tau aggregation and propagation in wild-type mice. Brain Commun 2020; 2:fcaa091. [PMID: 33005889 PMCID: PMC7519727 DOI: 10.1093/braincomms/fcaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulation of assembled tau protein in the central nervous system is characteristic of Alzheimer’s disease and several other neurodegenerative diseases, called tauopathies. Recent studies have revealed that propagation of assembled tau is key to understanding the pathological mechanisms of these diseases. Mouse models of tau propagation are established by injecting human-derived tau seeds intracerebrally; nevertheless, these have a limitation in terms of regulation of availability. To date, no study has shown that synthetic assembled tau induce tau propagation in non-transgenic mice. Here we confirm that dextran sulphate, a sulphated glycosaminoglycan, induces the assembly of recombinant tau protein into filaments in vitro. As compared to tau filaments induced by heparin, those induced by dextran sulphate showed higher thioflavin T fluorescence and lower resistance to guanidine hydrochloride, which suggests that the two types of filaments have distinct conformational features. Unlike other synthetic filament seeds, intracerebral injection of dextran sulphate-induced assemblies of recombinant tau caused aggregation of endogenous murine tau in wild-type mice. AT8-positive tau was present at the injection site 1 month after injection, from where it spread to anatomically connected regions. Induced tau assemblies were also stained by anti-tau antibodies AT100, AT180, 12E8, PHF1, anti-pS396 and anti-pS422. They were thioflavin- and Gallyas-Braak silver-positive, indicative of amyloid. In biochemical analyses, accumulated sarkosyl-insoluble and hyperphosphorylated tau was observed in the injected mice. In conclusion, we revealed that intracerebral injection of synthetic full-length wild-type tau seeds prepared in the presence of dextran sulphate caused tau propagation in non-transgenic mice. These findings establish that propagation of tau assemblies does not require tau to be either mutant and/or overexpressed.
Collapse
Affiliation(s)
- Masami Masuda-Suzukake
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Genjiro Suzuki
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masato Hosokawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takashi Nonaka
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Masato Hasegawa
- Dementia Research Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
50
|
Murakami T, Noguchi K, Hachiya N, Kametani F, Tasaki M, Nakaba S, Sassa Y, Yamashita T, Obayashi K, Ando Y, Hamamura M, Kanno T, Kawasako K. Needle-shaped amyloid deposition in rat mammary gland: evidence of a novel amyloid fibril protein. Amyloid 2020; 27:25-35. [PMID: 31615282 DOI: 10.1080/13506129.2019.1675623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is an extremely rare event in rats. In this study, we report that lipopolysaccharide binding protein (LBP) is the most likely amyloidogenic protein in rat mammary amyloidosis. Histologically, corpora amylacea (CA) and stromal amyloid (SA) were observed in rat mammary glands, and needle-shaped amyloid (NA) was also observed on the surface or gap of CA and SA. Following surveillance in aged rats, NA was observed in 62% of mammary tumours, 25% of male mammary glands and 83% of female mammary glands. Proteomic analysis showed that lactadherin was a major constitutive protein of CA and SA, and both were positive following immunohistochemistry with anti-lactadherin antibodies. In the same analysis, LBP was detected as a prime candidate protein in NA, and NA was positive following immunohistochemistry and immunoelectron microscopy with anti-LBP antibody. Furthermore, synthetic peptides derived from rat LBP formed amyloid fibrils in vitro. Overall, these results provide evidence that LBP is an amyloid precursor protein of NA in rat mammary glands.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiichi Noguchi
- Research Center for Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Naomi Hachiya
- Tokyo Metropolitan Industrial Technology Research Institute, Tokyo, Japan
| | - Fuyuki Kametani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masayoshi Tasaki
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Nakaba
- Division of Natural Resources and Eco-Materials, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Yukiko Sassa
- Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Konen Obayashi
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Hamamura
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| | - Takeshi Kanno
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| | - Kazufumi Kawasako
- Pathology Department, Nonclinical Research Center, Drug Development Service Segment, LSI Medicine Corporation, Uto, Japan
| |
Collapse
|