1
|
Wang K, Zen L, Sheng L, Lu F, Lin Q, Li Y, Tong H. Silencing PsASH2 affects embryo development in the cotton mealybug. INSECT MOLECULAR BIOLOGY 2025. [PMID: 40448281 DOI: 10.1111/imb.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Mealybugs are highly aggressive pests that infest various plants and cause substantial economic losses. Histone lysine methyltransferases (KMT) are evolutionarily conserved and proposed to be essential in early embryo development in animals. However, few KMTs have been reported in mealybugs. Here, we identified a novel KMT gene, PsASH2, in the cotton mealybug, Phenacoccus solenopsis Tinsley. This gene was highly expressed in the ovary of female adults. Through RNA interference (RNAi) of PsASH2 by dsRNA microinjection, we found a reduction in the number of male embryos and total embryos in the ovaries of pregnant females. Continuous downregulation of PsASH2 in mated females until their death resulted in few changes in sex ratio but significant decreases in the number of both male and female offspring. Therefore, we believe that PsASH2 plays essential roles in embryo survival for both sexes of the cotton mealybug which may provide a potential target gene for the management of cotton mealybug by disrupting embryo development.
Collapse
Affiliation(s)
- Kaixin Wang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lingqi Zen
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lilu Sheng
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Feihuang Lu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qianjin Lin
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yifan Li
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
3
|
Sharma H, Koirala S, Chew YL, Konopka A. DNA Damage and Chromatin Rearrangement Work Together to Promote Neurodegeneration. Mol Neurobiol 2025; 62:1282-1290. [PMID: 38977621 PMCID: PMC11711770 DOI: 10.1007/s12035-024-04331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Neurodegenerative diseases have a complex origin and are composed of genetic and environmental factors. Both DNA damage and chromatin rearrangement are important processes that occur under pathological conditions and in neurons functioning properly. While numerous studies have demonstrated the inseparable relationship between DNA damage and chromatin organization, understanding of this relationship, especially in neurodegenerative diseases, requires further study. Interestingly, recent studies revealed that known hallmark proteins involved in neurodegenerative diseases function in both DNA damage and chromatin reorganization, and this review discusses the current knowledge of this relationship. This review focused on hallmark proteins involved in various neurodegenerative diseases, such as the microtubule-associated protein tau, TAR DNA/RNA binding protein 43 (TDP-43), superoxide dismutase 1 (SOD1), fused in sarcoma (FUS), huntingtin (HTT), α-synuclein, and β-amyloid precursor protein (APP). Hence, DNA damage and chromatin rearrangement are associated with disease mechanisms in distinct neurodegenerative diseases. Targeting common modulators of DNA repair and chromatin reorganization may lead to promising therapies for treating neurodegeneration.
Collapse
|
4
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Giong HK, Hyeon SJ, Lee JG, Cho HJ, Park U, Stein TD, Lee J, Yu K, Ryu H, Lee JS. Tau accumulation is cleared by the induced expression of VCP via autophagy. Acta Neuropathol 2024; 148:46. [PMID: 39316141 PMCID: PMC11422276 DOI: 10.1007/s00401-024-02804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Tauopathy, including frontotemporal lobar dementia and Alzheimer's disease, describes a class of neurodegenerative diseases characterized by the aberrant accumulation of Tau protein due to defects in proteostasis. Upon generating and characterizing a stable transgenic zebrafish that expresses the human TAUP301L mutant in a neuron-specific manner, we found that accumulating Tau protein was efficiently cleared via an enhanced autophagy activity despite constant Tau mRNA expression; apparent tauopathy-like phenotypes were revealed only when the autophagy was genetically or chemically inhibited. We performed RNA-seq analysis, genetic knockdown, and rescue experiments with clinically relevant point mutations of valosin-containing protein (VCP), and showed that induced expression of VCP, an essential cytosolic chaperone for the protein quality system, was a key factor for Tau degradation via its facilitation of the autophagy flux. This novel function of VCP in Tau clearance was further confirmed in a tauopathy mouse model where VCP overexpression significantly decreased the level of phosphorylated and oligomeric/aggregate Tau and rescued Tau-induced cognitive behavioral phenotypes, which were reversed when the autophagy was blocked. Importantly, VCP expression in the brains of human Alzheimer's disease patients was severely downregulated, consistent with its proposed role in Tau clearance. Taken together, these results suggest that enhancing the expression and activity of VCP in a spatiotemporal manner to facilitate the autophagy pathway is a potential therapeutic approach for treating tauopathy.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Seung Jae Hyeon
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Geun Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Uiyeol Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Thor D Stein
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kweon Yu
- Disease Target Structure Research Centre, KRIBB, Daejeon, 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jeong-Soo Lee
- Microbiome Convergence Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- KRIBB School, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
6
|
Tripathi S, Bhawana. Epigenetic Orchestration of Neurodegenerative Disorders: A Possible Target for Curcumin as a Therapeutic. Neurochem Res 2024; 49:2319-2335. [PMID: 38856890 DOI: 10.1007/s11064-024-04167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Epigenetic modulations play a major role in gene expression and thus are responsible for various physiological changes including age-associated neurological disorders. Neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD), although symptomatically different, may share common underlying mechanisms. Most neurodegenerative diseases are associated with increased oxidative stress, aggregation of certain proteins, mitochondrial dysfunction, inactivation/dysregulation of protein degradation machinery, DNA damage and cell excitotoxicity. Epigenetic modulations has been reported to play a significant role in onset and progression of neurodegenerative diseases by regulating these processes. Previous studies have highlighted the marked antioxidant and neuroprotective abilities of polyphenols such as curcumin, by increased activity of detoxification systems like superoxide dismutase (SOD), catalase or glutathione peroxidase. The role of curcumin as an epigenetic modulator in neurological disorders and neuroinflammation apart from other chronic diseases have also been reported by a few groups. Nonetheless, the evidences for the role of curcumin mediated epigenetic modulation in its neuroprotective ability are still limited. This review summarizes the current knowledge of the role of mitochondrial dysfunction, epigenetic modulations and mitoepigenetics in age-associated neurological disorders such as PD, AD, HD, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS), and describes the neuroprotective effects of curcumin in the treatment and/or prevention of these neurodegenerative diseases by regulation of the epigenetic machinery.
Collapse
Affiliation(s)
- Shweta Tripathi
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India.
| | - Bhawana
- Department of Paramedical Sciences, Faculty of Allied Health Sciences, SGT University, Gurugram, 122505, Haryana, India
| |
Collapse
|
7
|
Tong H, Omar MAA, Wang Y, Li M, Li Z, Li Z, Ao Y, Wang Y, Jiang M, Li F. Essential roles of histone lysine methyltransferases EZH2 and EHMT1 in male embryo development of Phenacoccus solenopsis. Commun Biol 2024; 7:1021. [PMID: 39164404 PMCID: PMC11336100 DOI: 10.1038/s42003-024-06705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Paternal genome elimination (PGE) is an intriguing but poorly understood reproductive strategy in which females are typically diploid, but males lose paternal genomes. Paternal genome heterochromatin (PGH) occurs in arthropods with germline PGE, such as the mealybug, coffee borer beetles, and booklice. Here, we present evidence that PGH initially occurs during early embryo development at around 15 h post-mating (hpm) in the cotton mealybug, Phenacoccus solenopsis Tinsley. Transcriptome analysis followed by qPCR validation indicated that six histone lysine methyltransferase (KMT) genes are predominantly expressed in adult females. We knocked down these five genes through dsRNA microinjection. We found that downregulation of two KMT genes, PsEZH2-X1 and PsEHMT1, resulted in a decrease of heterochromatin-related methylations, including H3K27me1, H3K27me3, and H3K9me3 in the ovaries, fewer PGH male embryos, and reduced male offspring. For further confirmation, we obtained two strains of transgenic tobacco highly expressing dsRNA targeting PsEZH2-X1 and PsEHMT1, respectively. Similarly, fewer PGH embryos and fewer male offspring were observed when feeding on these transgenic tobacco plants. Overall, we present evidence that PsEZH2-X1 and PsEHMT1 have essential roles in male embryo survival by regulating PGH formation in cotton mealybugs.
Collapse
Affiliation(s)
- Haojie Tong
- College of Life Sciences, China Jiliang University, Hangzhou, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Yuan Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zicheng Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Ao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying Wang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
10
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
11
|
Bayles CE, Hale DE, Konieczny A, Anderson VD, Richardson CR, Brown KV, Nguyen JT, Hecht J, Schwartz N, Kharel MK, Amissah F, Dowling TC, Nybo SE. Upcycling the anthracyclines: New mechanisms of action, toxicology, and pharmacology. Toxicol Appl Pharmacol 2023; 459:116362. [PMID: 36592899 PMCID: PMC9840691 DOI: 10.1016/j.taap.2022.116362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The anthracyclines are a family of natural products isolated from soil bacteria with over 2000 chemical representatives. Since their discovery seventy years ago by Waksman and co-workers, anthracyclines have become one of the best-characterized anticancer chemotherapies in clinical use. The anthracyclines exhibit broad-spectrum antineoplastic activity for the treatment of a variety of solid and liquid tumors, however, their clinical use is limited by their dose-limiting cardiotoxicity. In this review article, we discuss the toxicity of the anthracyclines on several organ systems, including new insights into doxorubicin-induced cardiotoxicity. In addition, we discuss new medicinal chemistry developments in the biosynthesis of new anthracycline analogs and the synthesis of new anthracycline analogs with diminished cardiotoxicity. Lastly, we review new studies that describe the repurposing of the anthracyclines, or "upcycling" of the anthracyclines, as anti-infective agents, or drugs for niche indications. Altogether, the anthracyclines remain a mainstay in the clinic with a potential new "lease on life" due to deeper insight into the mechanism underlying their cardiotoxicity and new developments into potential new clinical indications for their use. Keywords: Anthracycline, chemotherapy, toxicology, medicinal chemistry, biosynthesis.
Collapse
Affiliation(s)
- Claudine E Bayles
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Danielle E Hale
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Ali Konieczny
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Veronica D Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Claire R Richardson
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Katelyn V Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Jennifer T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Jacob Hecht
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Nora Schwartz
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Madan K Kharel
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Felix Amissah
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - Thomas C Dowling
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA
| | - S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, USA.
| |
Collapse
|
12
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
13
|
Lee HN, Hyeon SJ, Kim H, Sim KM, Kim Y, Ju J, Lee J, Wang Y, Ryu H, Seong J. Decreased FAK activity and focal adhesion dynamics impair proper neurite formation of medium spiny neurons in Huntington's disease. Acta Neuropathol 2022; 144:521-536. [PMID: 35857122 DOI: 10.1007/s00401-022-02462-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine expansion in the protein huntingtin (HTT) [55]. While the final pathological consequence of HD is the neuronal cell death in the striatum region of the brain, it is still unclear how mutant HTT (mHTT) causes synaptic dysfunctions at the early stage and during the progression of HD. Here, we discovered that the basal activity of focal adhesion kinase (FAK) is severely reduced in a striatal HD cell line, a mouse model of HD, and the human post-mortem brains of HD patients. In addition, we observed with a FRET-based FAK biosensor [59] that neurotransmitter-induced FAK activation is decreased in HD striatal neurons. Total internal reflection fluorescence (TIRF) imaging revealed that the reduced FAK activity causes the impairment of focal adhesion (FA) dynamics, which further leads to the defect in filopodial dynamics causing the abnormally increased number of immature neurites in HD striatal neurons. Therefore, our results suggest that the decreased FAK and FA dynamics in HD impair the proper formation of neurites, which is crucial for normal synaptic functions [52]. We further investigated the molecular mechanism of FAK inhibition in HD and surprisingly discovered that mHTT strongly associates with phosphatidylinositol 4,5-biphosphate, altering its normal distribution at the plasma membrane, which is crucial for FAK activation [14, 60]. Therefore, our results provide a novel molecular mechanism of FAK inhibition in HD along with its pathological mechanism for synaptic dysfunctions during the progression of HD.
Collapse
Affiliation(s)
- Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Kyoung Mi Sim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, CA, 92093, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02453, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
14
|
Yoon Y, Kim S, Seol Y, Im H, Park U, Han HB, Choi JH, Ryu H. Increases of Phosphorylated Tau (Ser202/Thr205) in the Olfactory Regions Are Associated with Impaired EEG and Olfactory Behavior in Traumatic Brain Injury Mice. Biomedicines 2022; 10:865. [PMID: 35453615 PMCID: PMC9031269 DOI: 10.3390/biomedicines10040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) leads to long-term cognitive impairments, with an increased risk for neurodegenerative and psychiatric disorders. Among these various impairments, olfactory dysfunction is one of the most common symptoms in TBI patients. However, there are very few studies that show the association between olfactory dysfunction and repetitive TBI. To investigate the effects of repetitive TBI on olfactory functioning and the related pathological neuronal injuries in mice, we applied a weight-drop model of TBI and performed neuropathological examinations and electroencephalography (EEG) in olfactory-bulb-associated areas. Through neuropathological examinations, we found significant increases of amyloid precursor protein (APP) and phosphorylated Tau (p-Tau) (S202/T205) in olfactory-bulb-associated areas. Neuronal atrophy in the lateral anterior olfactory nucleus (AOL), granule layer olfactory bulb (GrO), and dorsal tenia tecta (DTT) was also found to be correlated with p-Tau levels. However, there was no difference in the total Tau levels in the olfactory-bulb-associated areas of TBI mice. Electroencephalography (EEG) of repetitive TBI mouse models showed impaired spontaneous delta oscillation, as well as altered cross-frequency coupling between delta phase and amplitudes of the fast oscillations in the resting-state olfactory bulb. Furthermore, abnormal alterations in EEG band powers were observed during the olfactory oddball paradigm test. TBI also led to impairments of the olfactory-function-associated behaviors. This study provides evidence of behavioral, neuropathological, and physiological alterations in the mouse olfactory system caused by repetitive TBI. Together, p-Tau alterations and EEG impairments may serve as important biomarkers of olfactory-track-associated dysfunctions in repetitive TBI.
Collapse
Affiliation(s)
- Younghyun Yoon
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA;
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
| | - SuHyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
| | - YunHee Seol
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
| | - Hyoenjoo Im
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
| | - Uiyeol Park
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
| | - Hio-Been Han
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jee Hyun Choi
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
- Neuroscience Program, Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.K.); (Y.S.); (H.I.); (U.P.); (H.-B.H.)
- Neuroscience Program, Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
- Boston University Alzheimer’s Disease Research Center, Department of Neurology, Boston University School of Medicine, Boston, MA 02130, USA
| |
Collapse
|
15
|
Hwang YJ, Hyeon SJ, Kim Y, Lim S, Lee MY, Kim J, Londhe AM, Gotina L, Kim Y, Pae AN, Cho YS, Seong J, Seo H, Kim YK, Choo H, Ryu H, Min SJ. Modulation of SETDB1 activity by APQ ameliorates heterochromatin condensation, motor function, and neuropathology in a Huntington's disease mouse model. J Enzyme Inhib Med Chem 2021; 36:856-868. [PMID: 33771089 PMCID: PMC8008885 DOI: 10.1080/14756366.2021.1900160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 12/03/2022] Open
Abstract
The present study describes evaluation of epigenetic regulation by a small molecule as the therapeutic potential for treatment of Huntington's disease (HD). We identified 5-allyloxy-2-(pyrrolidin-1-yl)quinoline (APQ) as a novel SETDB1/ESET inhibitor using a combined in silico and in vitro cell based screening system. APQ reduced SETDB1 activity and H3K9me3 levels in a HD cell line model. In particular, not only APQ reduced H3K9me3 levels in the striatum but it also improved motor function and neuropathological symptoms such as neuronal size and activity in HD transgenic (YAC128) mice with minimal toxicity. Using H3K9me3-ChIP and genome-wide sequencing, we also confirmed that APQ modulates H3K9me3-landscaped epigenomes in YAC128 mice. These data provide that APQ, a novel small molecule SETDB1 inhibitor, coordinates H3K9me-dependent heterochromatin remodelling and can be an epigenetic drug for treating HD, leading with hope in clinical trials of HD.
Collapse
Affiliation(s)
- Yu Jin Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Younghee Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungsu Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
| | | | - Jieun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ashwini M. Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yunha Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yong Seo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Jihye Seong
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyunah Choo
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Neurology and Boston University Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, USA
| | - Sun-Joon Min
- Department of Chemical & Molecular Engineering/Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
16
|
Hyeon SJ, Park J, Yoo J, Kim SH, Hwang YJ, Kim SC, Liu T, Shim HS, Kim Y, Cho Y, Woo J, Kim KS, Myers RH, Ryu HL, Kowall NW, Song EJ, Hwang EM, Seo H, Lee J, Ryu H. Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease. Prog Neurobiol 2021; 204:102110. [PMID: 34166773 PMCID: PMC8364511 DOI: 10.1016/j.pneurobio.2021.102110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction is associated with neuronal damage in Huntington's disease (HD), but the precise mechanism of mitochondria-dependent pathogenesis is not understood yet. Herein, we found that colocalization of XIAP and p53 was prominent in the cytosolic compartments of normal subjects but reduced in HD patients and HD transgenic animal models. Overexpression of mutant Huntingtin (mHTT) reduced XIAP levels and elevated mitochondrial localization of p53 in striatal cells in vitro and in vivo. Interestingly, XIAP interacted directly with the C-terminal domain of p53 and decreased its stability via autophagy. Overexpression of XIAP prevented mitochondrially targeted-p53 (Mito-p53)-induced mitochondrial oxidative stress and striatal cell death, whereas, knockdown of XIAP exacerbated Mito-p53-induced neuronal damage in vitro. In vivo transduction of AAV-shRNA XIAP in the dorsal striatum induced rapid onset of disease and reduced the lifespan of HD transgenic (N171-82Q) mice compared to WT littermate mice. XIAP dysfunction led to ultrastructural changes of the mitochondrial cristae and nucleus morphology in striatal cells. Knockdown of XIAP exacerbated neuropathology and motor dysfunctions in N171-82Q mice. In contrast, XIAP overexpression improved neuropathology and motor behaviors in both AAV-mHTT-transduced mice and N171-82Q mice. Our data provides a molecular and pathological mechanism that deregulation of XIAP triggers mitochondria dysfunction and other neuropathological processes via the neurotoxic effect of p53 in HD. Together, the XIAP-p53 pathway is a novel pathological marker and can be a therapeutic target for improving the symptoms in HD.
Collapse
Affiliation(s)
- Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Junsang Yoo
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Su-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yu Jin Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Seung-Chan Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Tian Liu
- USF Health Byrd Alzheimer's Institute and Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL 33613, USA
| | - Hyun Soo Shim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yunha Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yakdol Cho
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Jiwan Woo
- KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Key-Sun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; KIST Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Richard H Myers
- Boston University Genome Science Institute and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Neil W Kowall
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Eun Mi Hwang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyemyung Seo
- Department of Molecular & Life Sciences, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, South Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; VA Boston Healthcare System, Boston, MA 02130, USA.
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
18
|
Natarajan K, Eisfeldt J, Hammond M, Laffita-Mesa JM, Patra K, Khoshnood B, Öijerstedt L, Graff C. Single-cell multimodal analysis in a case with reduced penetrance of Progranulin-Frontotemporal Dementia. Acta Neuropathol Commun 2021; 9:132. [PMID: 34344473 PMCID: PMC8336016 DOI: 10.1186/s40478-021-01234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime (Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epigenetic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings may stimulate similar follow-up studies and new therapeutic approaches.
Collapse
|
19
|
Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK, Lee JS, Song EJ, Ryu H, Yu K. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun 2021; 12:3291. [PMID: 34078905 PMCID: PMC8172564 DOI: 10.1038/s41467-021-23597-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of hyperphosphorylated intracellular Tau tangles in the brain is a hallmark of Alzheimer's disease (AD). Tau hyperphosphorylation destabilizes microtubules, promoting neurodegeneration in AD patients. To identify suppressors of tau-mediated AD, we perform a screen using a microRNA (miR) library in Drosophila and identify the miR-9 family as suppressors of human tau overexpression phenotypes. CG11070, a miR-9a target gene, and its mammalian orthologue UBE4B, an E3/E4 ubiquitin ligase, alleviate eye neurodegeneration, synaptic bouton defects, and crawling phenotypes in Drosophila human tau overexpression models. Total and phosphorylated Tau levels also decrease upon CG11070 or UBE4B overexpression. In mammalian neuroblastoma cells, overexpression of UBE4B and STUB1, which encodes the E3 ligase CHIP, increases the ubiquitination and degradation of Tau. In the Tau-BiFC mouse model, UBE4B and STUB1 overexpression also increase oligomeric Tau degradation. Inhibitor assays of the autophagy and proteasome systems reveal that the autophagy-lysosome system is the major pathway for Tau degradation in this context. These results demonstrate that UBE4B, a miR-9 target gene, promotes autophagy-mediated Tau degradation together with STUB1, and is thus an innovative therapeutic approach for AD.
Collapse
Affiliation(s)
- Manivannan Subramanian
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Tanuza Das
- grid.35541.360000000121053345Biomedical Research Institute, KIST, Seoul, Korea
| | - Yoon Seok Suh
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea
| | - Yun Kyung Kim
- grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Jeong-Soo Lee
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Eun Joo Song
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hoon Ryu
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Kweon Yu
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, UST, Daejeon, Korea
| |
Collapse
|
20
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Alcalá‐Vida R, Garcia‐Forn M, Castany‐Pladevall C, Creus‐Muncunill J, Ito Y, Blanco E, Golbano A, Crespí‐Vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez‐Navarro E. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Mol Med 2021; 13:e12105. [PMID: 33369245 PMCID: PMC7863407 DOI: 10.15252/emmm.202012105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lamins are crucial proteins for nuclear functionality. Here, we provide new evidence showing that increased lamin B1 levels contribute to the pathophysiology of Huntington's disease (HD), a CAG repeat-associated neurodegenerative disorder. Through fluorescence-activated nuclear suspension imaging, we show that nucleus from striatal medium-sized spiny and CA1 hippocampal neurons display increased lamin B1 levels, in correlation with altered nuclear morphology and nucleocytoplasmic transport disruption. Moreover, ChIP-sequencing analysis shows an alteration of lamin-associated chromatin domains in hippocampal nuclei, accompanied by changes in chromatin accessibility and transcriptional dysregulation. Supporting lamin B1 alterations as a causal role in mutant huntingtin-mediated neurodegeneration, pharmacological normalization of lamin B1 levels in the hippocampus of the R6/1 mouse model of HD by betulinic acid administration restored nuclear homeostasis and prevented motor and cognitive dysfunction. Collectively, our work points increased lamin B1 levels as a new pathogenic mechanism in HD and provides a novel target for its intervention.
Collapse
Affiliation(s)
- Rafael Alcalá‐Vida
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Laboratory of Cognitive and Adaptive NeuroscienceUMR 7364 (CNRS/Strasbourg University)StrasbourgFrance
| | - Marta Garcia‐Forn
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carla Castany‐Pladevall
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jordi Creus‐Muncunill
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Yoko Ito
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Arantxa Golbano
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Kilian Crespí‐Vázquez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Aled Parry
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUK
| | - Guy Slater
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Shamith Samarajiwa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sandra Peiró
- Vall d'Hebron Institute of OncologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Esther Pérez‐Navarro
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
22
|
Markouli M, Strepkos D, Chlamydas S, Piperi C. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases. Prog Neurobiol 2020; 200:101968. [PMID: 33279625 DOI: 10.1016/j.pneurobio.2020.101968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/31/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic changes that regulate chromatin structure have a major impact in genome stabilization and maintenance of cellular homeostasis, been recently implicated in the pathophysiology of central nervous system (CNS). Aberrant expression and dysregulation of histone modification enzymes has been associated with the development of several CNS disorders, revealing these enzymes as putative targets for drug development and novel therapeutic approaches. SETDB1 is a histone lysine methyltransferase responsible for the di- and tri-methylation of histone 3 (H3) at lysine (K) 9 in euchromatic regions further promoting gene silencing through heterochromatin formation. By this way, SETDB1 has been shown to regulate gene expression and influence normal cellular homeostasis required for nervous system function while it is also implicated in the pathogenesis of CNS disorders. Among them, brain tumors, schizophrenia, Huntington's disease, autism spectrum disorders along with alcohol-induced fetal neurobehavioral deficits and Prader-Willi syndrome are representative examples, indicating the aberrant expression and function of SETDB1 as a common pathogenic factor. In this review, we focus on SETDB1-associated molecular mechanisms implicated in CNS physiology and disease while we further discuss current pharmacological approaches targeting SETDB1 enzymatic activity with beneficial effects.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sarantis Chlamydas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
23
|
Alcalà-Vida R, Awada A, Boutillier AL, Merienne K. Epigenetic mechanisms underlying enhancer modulation of neuronal identity, neuronal activity and neurodegeneration. Neurobiol Dis 2020; 147:105155. [PMID: 33127472 DOI: 10.1016/j.nbd.2020.105155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), are progressive conditions characterized by selective, disease-dependent loss of neuronal regions and/or subpopulations. Neuronal loss is preceded by a long period of neuronal dysfunction, during which glial cells also undergo major changes, including neuroinflammatory response. Those dramatic changes affecting both neuronal and glial cells associate with epigenetic and transcriptional dysregulations, characterized by defined cell-type-specific signatures. Notably, increasing studies support the view that altered regulation of transcriptional enhancers, which are distal regulatory regions of the genome capable of modulating the activity of promoters through chromatin looping, play a critical role in transcriptional dysregulation in HD and AD. We review current knowledge on enhancers in HD and AD, and highlight challenging issues to better decipher the epigenetic code of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Alcalà-Vida
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | - Ali Awada
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | | | - Karine Merienne
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France.
| |
Collapse
|
24
|
Lee MY, Lee J, Hyeon SJ, Cho H, Hwang YJ, Shin J, McKee AC, Kowall NW, Kim J, Stein TD, Hwang D, Ryu H. Epigenome signatures landscaped by histone H3K9me3 are associated with the synaptic dysfunction in Alzheimer's disease. Aging Cell 2020; 19:e13153. [PMID: 32419307 PMCID: PMC7294781 DOI: 10.1111/acel.13153] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 02/09/2020] [Accepted: 03/29/2020] [Indexed: 01/03/2023] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) and the commonest cause of dementia in the elderly remain incompletely understood. Recently, epigenetic modifications have been shown to play a potential role in neurodegeneration, but the specific involvement of epigenetic signatures landscaped by heterochromatin has not been studied in AD. Herein, we discovered that H3K9me3-mediated heterochromatin condensation is elevated in the cortex of sporadic AD postmortem brains. In order to identify which epigenomes are modulated by heterochromatin, we performed H3K9me3-chromatin immunoprecipitation (ChIP)-sequencing and mRNA-sequencing on postmortem brains from normal subjects and AD patients. The integrated analyses of genome-wide ChIP- and mRNA-sequencing data identified epigenomes that were highly occupied by H3K9me3 and inversely correlated with their mRNA expression levels in AD. Biological network analysis further revealed H3K9me3-landscaped epigenomes to be mainly involved in synaptic transmission, neuronal differentiation, and cell motility. Together, our data show that the abnormal heterochromatin remodeling by H3K9me3 leads to down-regulation of synaptic function-related genes, suggesting that the epigenetic alteration by H3K9me3 is associated with the synaptic pathology of sporadic AD.
Collapse
Affiliation(s)
| | - Junghee Lee
- Veteran's Affairs Boston Healthcare SystemBostonMAUSA,Department of NeurologyBoston University Alzheimer’s Disease CenterBoston University School of MedicineBostonMAUSA
| | - Seung Jae Hyeon
- Center for NeuromedicineBrain Science InstituteKorea Institute of Science and TechnologySeoulSouth Korea
| | - Hyesun Cho
- Genome Medicine Institute and Department of BiochemistrySeoul National University College of MedicineSeoulSouth Korea
| | - Yu Jin Hwang
- Center for NeuromedicineBrain Science InstituteKorea Institute of Science and TechnologySeoulSouth Korea
| | - Jong‐Yeon Shin
- Genome Medicine Institute and Department of BiochemistrySeoul National University College of MedicineSeoulSouth Korea
| | - Ann C. McKee
- Veteran's Affairs Boston Healthcare SystemBostonMAUSA,Department of NeurologyBoston University Alzheimer’s Disease CenterBoston University School of MedicineBostonMAUSA,Center for the Study of Traumatic EncephalopathyBoston University School of MedicineBostonMAUSA
| | - Neil W. Kowall
- Veteran's Affairs Boston Healthcare SystemBostonMAUSA,Department of NeurologyBoston University Alzheimer’s Disease CenterBoston University School of MedicineBostonMAUSA
| | - Jong‐Il Kim
- Genome Medicine Institute and Department of BiochemistrySeoul National University College of MedicineSeoulSouth Korea
| | - Thor D. Stein
- Veteran's Affairs Boston Healthcare SystemBostonMAUSA,Department of NeurologyBoston University Alzheimer’s Disease CenterBoston University School of MedicineBostonMAUSA
| | - Daehee Hwang
- Department of Biological SciencesSeoul National UniversitySeoulSouth Korea
| | - Hoon Ryu
- Veteran's Affairs Boston Healthcare SystemBostonMAUSA,Department of NeurologyBoston University Alzheimer’s Disease CenterBoston University School of MedicineBostonMAUSA,Center for NeuromedicineBrain Science InstituteKorea Institute of Science and TechnologySeoulSouth Korea
| |
Collapse
|
25
|
Zhu Y, Sun D, Jakovcevski M, Jiang Y. Epigenetic mechanism of SETDB1 in brain: implications for neuropsychiatric disorders. Transl Psychiatry 2020; 10:115. [PMID: 32321908 PMCID: PMC7176658 DOI: 10.1038/s41398-020-0797-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Neuropsychiatric disorders are a collective of cerebral conditions with a multifactorial and polygenetic etiology. Dysregulation of epigenetic profiles in the brain is considered to play a critical role in the development of neuropsychiatric disorders. SET domain, bifurcate 1 (SETDB1), functioning as a histone H3K9 specific methyltransferase, is not only critically involved in transcriptional silencing and local heterochromatin formation, but also affects genome-wide neuronal epigenetic profiles and is essential for 3D genome integrity. Here, we provide a review of recent advances towards understanding the role of SETDB1 in the central nervous system during early neurodevelopment as well as in the adult brain, with a particular focus on studies that link its functions to neuropsychiatric disorders and related behavioral changes, and the exploration of novel therapeutic strategies targeting SETDB1.
Collapse
Affiliation(s)
- Yueyan Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China
| | - Daijing Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China
| | - Mira Jakovcevski
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yan Jiang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
26
|
Rowe EM, Xing V, Biggar KK. Lysine methylation: Implications in neurodegenerative disease. Brain Res 2019; 1707:164-171. [DOI: 10.1016/j.brainres.2018.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
|
27
|
Epigenetic Regulation in Neurodegenerative Diseases. Trends Neurosci 2018; 41:587-598. [PMID: 29885742 DOI: 10.1016/j.tins.2018.05.005] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022]
Abstract
Mechanisms of epigenetic regulation, including DNA methylation, chromatin remodeling, and histone post-translational modifications, are involved in multiple aspects of neuronal function and development. Recent discoveries have shed light on critical functions of chromatin in the aging brain, with an emerging realization that the maintenance of a healthy brain relies heavily on epigenetic mechanisms. Here, we present recent advances, with a focus on histone modifications and the implications for several neurodegenerative diseases including Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). We highlight common and unique epigenetic mechanisms among these situations and point to emerging therapeutic approaches.
Collapse
|