1
|
Gomez-Cardona E, Eskandari-Sedighi G, Fahlman R, Westaway D, Julien O. Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein in Vivo. ACS Chem Neurosci 2024; 15:134-146. [PMID: 38095594 PMCID: PMC10768724 DOI: 10.1021/acschemneuro.3c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024] Open
Abstract
Alternative α- and β-cleavage events in the cellular prion protein (PrPC) central region generate fragments with distinct biochemical features that affect prion disease pathogenesis, but the assignment of precise cleavage positions has proven challenging. Exploiting mouse transgenic models expressing wild-type (WT) PrPC and an octarepeat region mutant allele (S3) with increased β-fragmentation, cleavage sites were defined using LC-MS/MS in conjunction with N-terminal enzymatic labeling and chemical in-gel acetylation. Our studies profile the net proteolytic repertoire of the adult brain, as deduced from defining hundreds of proteolytic events in other proteins, and position individual cleavage events in PrPC α- and β-target areas imputed from earlier, lower resolution methods; these latter analyses established site heterogeneity, with six cleavage sites positioned in the β-cleavage region of WT PrPC and nine positions for S3 PrPC. Regarding α-cleavage, aside from reported N-termini at His110 and Val111, we identified a total of five shorter fragments in the brain of both mice lines. We infer that aminopeptidase activity in the brain could contribute to the ragged N-termini observed around PrPC's α- and β-cleavage sites, with this work providing a point of departure for further in vivo studies of brain proteases.
Collapse
Affiliation(s)
- Erik Gomez-Cardona
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ghazaleh Eskandari-Sedighi
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Richard Fahlman
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - David Westaway
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Center
for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department
of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
2
|
Feldman HH, Messer K, Qiu Y, Sabbagh M, Galasko D, Turner RS, Lopez O, Smith A, Durant J, Lupo JL, Revta C, Balasubramanian A, Kuehn-Wache K, Wassmann T, Schell-Mader S, Jacobs DM, Salmon DP, Léger G, DeMarco ML, Weber F. Varoglutamstat: Inhibiting Glutaminyl Cyclase as a Novel Target of Therapy in Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:S79-S93. [PMID: 39422941 PMCID: PMC11494639 DOI: 10.3233/jad-231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 10/19/2024]
Abstract
Background Varoglutamstat is a first-in-class, small molecule being investigated as a treatment for early Alzheimer's disease (AD). It is an inhibitor of glutaminyl cyclase (QC), the enzyme that post-translationally modifies amyloid-β (Aβ) peptides into a toxic form of pyroglutamate Aβ (pGlu-Aβ) and iso-QC which post-translationally modifies cytokine monocyte chemoattractant protein-1 (CCL2) into neuroinflammatory pGlu-CCL2. Early phase clinical trials identified dose margins for safety and tolerability of varoglutamstat and biomarker data supporting its potential for clinical efficacy in early AD. Objective Present the scientific rationale of varoglutamstat in the treatment of early AD and the methodology of the VIVA-MIND (NCT03919162) trial, which uses a seamless phase 2A-2B design. Our review also includes other pharmacologic approaches to pGlu-Aβ. Methods Phase 2A of the VIVA-MIND trial will determine the highest dose of varoglutamstat that is safe and well tolerated with sufficient plasma exposure and a calculated target occupancy. Continuous safety evaluation using a pre-defined safety stopping boundary will help determine the highest tolerated dose that will carry forward into phase 2B. An interim futility analysis of cognitive function and electroencephalogram changes will be conducted to inform the decision of whether to proceed with phase 2B. Phase 2B will assess the efficacy and longer-term safety of the optimal selected phase 2A dose through 72 weeks of treatment. Conclusions Varoglutamstat provides a unique dual mechanism of action addressing multiple pathogenic contributors to the disease cascade. VIVA-MIND provides a novel and efficient trial design to establish its optimal dosing, safety, tolerability, and efficacy in early AD.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Karen Messer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Qiu
- Department of Statistics, East China Normal University, Shanghai, China
| | - Marwan Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Smith
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
| | - January Durant
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Jody-Lynn Lupo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Carolyn Revta
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Archana Balasubramanian
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Diane M. Jacobs
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Gabriel Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - for the ADCS VIVA-MIND Study Group
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
- Department of Statistics, East China Normal University, Shanghai, China
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurology, Georgetown University, Washington, DC, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
- Vivoryon Therapeutics NV, Halle, Germany
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
4
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
5
|
Afram E, Lauritzen I, Bourgeois A, El Manaa W, Duplan E, Chami M, Valverde A, Charlotte B, Pardossi-Piquard R, Checler F. The η-secretase-derived APP fragment ηCTF is localized in Golgi, endosomes and extracellular vesicles and contributes to Aβ production. Cell Mol Life Sci 2023; 80:97. [PMID: 36930302 PMCID: PMC10023608 DOI: 10.1007/s00018-023-04737-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
The processing of the amyloid precursor protein (APP) is one of the key events contributing to Alzheimer's disease (AD) etiology. Canonical cleavages by β- and γ-secretases lead to Aβ production which accumulate in amyloid plaques. Recently, the matrix metalloprotease MT5-MMP, referred to as η-secretase, has been identified as a novel APP cleaving enzyme producing a transmembrane fragment, ηCTF that undergoes subsequent cleavages by α- and β-secretases yielding the Aηα and Aηβ peptides, respectively. The functions and contributions of ηCTF and its related fragments to AD pathology are poorly understood. In this study, we designed a novel immunological probe referred to as ηCTF-NTer antibody that specifically interacts with the N-terminal part of ηCTF targeting ηCTF, Aηα, Aηβ but not C99, C83 and Aβ. We examined the fate and localization of ηCTF fragment in various cell models and in mice. We found that overexpressed ηCTF undergoes degradation in the proteasomal and autophagic pathways and accumulates mainly in the Golgi and in endosomes. Moreover, we observed the presence of ηCTF in small extracellular vesicles purified from neuroblastoma cells or from mouse brains expressing ηCTF. Importantly, the expression of ηCTF in fibroblasts devoid on APP leads to Aβ production demonstrating its contribution to the amyloidogenic pathway. Finally, we observed an ηCTF-like immunoreactivity around amyloid plaques and an age-dependent accumulation of ηCTF in the triple-transgenic mouse AD model. Thus, our study suggests that the ηCTF fragment likely contributes to AD pathology by its exosomal spreading and involvement in Aβ production.
Collapse
Affiliation(s)
- Elissa Afram
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Inger Lauritzen
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Alexandre Bourgeois
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Wejdane El Manaa
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Audrey Valverde
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
- Fonds de Dotation CLINATEC, 17 rue des Martyrs, Bat 43, 38054, Grenoble, France
| | - Bauer Charlotte
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Raphaëlle Pardossi-Piquard
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| | - Frederic Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, UMR7275, Team Labeled "Laboratory of Excellence (Labex) DISTALZ", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
6
|
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J. The many facets of CD26/dipeptidyl peptidase 4 and its inhibitors in disorders of the CNS - a critical overview. Rev Neurosci 2023; 34:1-24. [PMID: 35771831 DOI: 10.1515/revneuro-2022-0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/10/2022] [Indexed: 01/11/2023]
Abstract
Dipeptidyl peptidase 4 is a serine protease that cleaves X-proline or X-alanine in the penultimate position. Natural substrates of the enzyme are glucagon-like peptide-1, glucagon inhibiting peptide, glucagon, neuropeptide Y, secretin, substance P, pituitary adenylate cyclase-activating polypeptide, endorphins, endomorphins, brain natriuretic peptide, beta-melanocyte stimulating hormone and amyloid peptides as well as some cytokines and chemokines. The enzyme is involved in the maintenance of blood glucose homeostasis and regulation of the immune system. It is expressed in many organs including the brain. DPP4 activity may be effectively depressed by DPP4 inhibitors. Apart from enzyme activity, DPP4 acts as a cell surface (co)receptor, associates with adeosine deaminase, interacts with extracellular matrix, and controls cell migration and differentiation. This review aims at revealing the impact of DPP4 and DPP4 inhibitors for several brain diseases (virus infections affecting the brain, tumours of the CNS, neurological and psychiatric disorders). Special emphasis is given to a possible involvement of DPP4 expressed in the brain.While prominent contributions of extracerebral DPP4 are evident for a majority of diseases discussed herein; a possible role of "brain" DPP4 is restricted to brain cancers and Alzheimer disease. For a number of diseases (Covid-19 infection, type 2 diabetes, Alzheimer disease, vascular dementia, Parkinson disease, Huntington disease, multiple sclerosis, stroke, and epilepsy), use of DPP4 inhibitors has been shown to have a disease-mitigating effect. However, these beneficial effects should mostly be attributed to the depression of "peripheral" DPP4, since currently used DPP4 inhibitors are not able to pass through the intact blood-brain barrier.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto v. Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
7
|
Abstract
Although the cause(s) of Alzheimer's disease in the majority of cases remains elusive, it has long been associated with hypertension. In animal models of the disease, hypertension has been shown to exacerbate Alzheimer-like pathology and behavior, while in humans, hypertension during mid-life increases the risk of developing the disease later in life. Unfortunately, once individuals are diagnosed with the disease, there are few therapeutic options available. There is neither an effective symptomatic treatment, one that treats the debilitating cognitive and memory deficits, nor, more importantly, a neuroprotective treatment, one that stops the relentless progression of the pathology. Further, there is no specific preventative treatment that offsets the onset of the disease. A key factor or clue in this quest for an effective preventative and therapeutic treatment may lie in the contribution of hypertension to the disease. In this review, we explore the idea that photobiomodulation, the application of specific wavelengths of light onto body tissues, can reduce the neuropathology and behavioral deficits in Alzheimer's disease by controlling hypertension. We suggest that treatment with photobiomodulation can be an effective preventative and therapeutic option for this neurodegenerative disease.
Collapse
Affiliation(s)
- Audrey Valverde
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de dotation Clinatec, Grenoble, France,
Institute of Ophthalmology, University College London, London, United Kingdom,Correspondence to: John Mitrofanis, E-mail:
| |
Collapse
|
8
|
Oumata N, Lu K, Teng Y, Cavé C, Peng Y, Galons H, Roques BP. Molecular mechanisms in Alzheimer's disease and related potential treatments such as structural target convergence of antibodies and simple organic molecules. Eur J Med Chem 2022; 240:114578. [PMID: 35841881 DOI: 10.1016/j.ejmech.2022.114578] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/12/2022]
Abstract
The amyloid cascade is the most frequently accepted hypothesis of Alzheimer's Disease (AD). According to this hypothesis, the formation of plaques precedes the appearance of fibrillary tangles. Therapeutic agents able to inhibit the formation of plaques are therefore considered as potential disease-modifying treatments (DMT) that could prevent or limit the progression of AD. Plaques are deposits formed by aggregates of amyloid-β (Aβ)-peptides. These peptides are metabolites of amyloid precursor protein (APP) first mediated by two enzymes: β-secretase 1 (BACE1) and γ-secretase. Molecular identification of these two enzymes has stimulated the development of their inhibitors. The clinical testing of these two classes of molecules has not been successful to date. The oligomerization of Aβ-peptides into plaques is now targeted by immunological approaches such as antibodies and vaccines. Structural consideration of the Aβ-peptide sequence led to the launch of the antibody Aducanumab. Several other antibodies are in late clinical phases. Progress in the understanding of the effects of N-truncated Aβ-peptides such as pE3-42, formed by the action of recently well characterized enzymes (aminopeptidase A, dipeptidylpeptidase-4 and glutaminyl cyclase) suggests that oligomerization can be limited either by enzyme inhibitors or antibody approaches. This strategy associating two structurally interconnected mechanisms is focused in this review.
Collapse
Affiliation(s)
- Nassima Oumata
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France
| | - Kui Lu
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuou Teng
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Christian Cavé
- UMR CNRS 8076 BioCIS, Faculty of Pharmacy, University Paris-Saclay, France
| | - Yu Peng
- Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hervé Galons
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France; Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Bernard P Roques
- Unité de Technologies Chimiques et Biologiques pour la Santé, Université Paris Cité INSERM U1267, CNRS UMR 8258, 4 Avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
9
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
10
|
Checler F, Valverde A. Aminopeptidase A and dipeptidyl peptidase 4: a pathogenic duo in Alzheimer's disease? Neural Regen Res 2022; 17:2215-2217. [PMID: 35259836 PMCID: PMC9083140 DOI: 10.4103/1673-5374.335818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Frédéric Checler
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labelled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| | - Audrey Valverde
- Université Côte d'Azur, INSERM, CNRS, IPMC, team labelled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| |
Collapse
|
11
|
Marengo L, Armbrust F, Schoenherr C, Storck SE, Schmitt U, Zampar S, Wirths O, Altmeppen H, Glatzel M, Kaether C, Weggen S, Becker-Pauly C, Pietrzik CU. Meprin β knockout reduces brain Aβ levels and rescues learning and memory impairments in the APP/lon mouse model for Alzheimer's disease. Cell Mol Life Sci 2022; 79:168. [PMID: 35235058 PMCID: PMC8891209 DOI: 10.1007/s00018-022-04205-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
β-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described β-secretase to generate Aβ peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aβ peptides generation is the metalloproteinase meprin β, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin β expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aβ species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aβ1-40 and 1-42 levels are reduced in APP/lon mice when meprin β is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aβ2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin β improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin β within the amyloidogenic pathway and Aβ production in vivo.
Collapse
Affiliation(s)
- Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Fred Armbrust
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Caroline Schoenherr
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Steffen E. Storck
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrich Schmitt
- Leibniz-Institute for Resilience Research, Mainz, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center HH-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf, Hamburg, Germany
| | | | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Becker-Pauly
- Institute of Biochemistry, Unit for Degradomics of the Protease Web, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Claus U. Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, 55099 Mainz, Germany
| |
Collapse
|
12
|
Pyroglutamate Aβ cascade as drug target in Alzheimer's disease. Mol Psychiatry 2022; 27:1880-1885. [PMID: 34880449 PMCID: PMC9126800 DOI: 10.1038/s41380-021-01409-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
One of the central aims in Alzheimer's disease (AD) research is the identification of clinically relevant drug targets. A plethora of potential molecular targets work very well in preclinical model systems both in vitro and in vivo in AD mouse models. However, the lack of translation into clinical settings in the AD field is a challenging endeavor. Although it is long known that N-terminally truncated and pyroglutamate-modified Abeta (AβpE3) peptides are abundantly present in the brain of AD patients, form stable and soluble low-molecular weight oligomers, and induce neurodegeneration in AD mouse models, their potential as drug target has not been generally accepted in the past. This situation has dramatically changed with the report that passive immunization with donanemab, an AβpE3-specific antibody, cleared aymloid plaques and stabilized cognitive deficits in a group of patients with mild AD in a phase II trial. This review summarizes the current knowledge on the molecular mechanisms of generation of AβpE, its biochemical properties, and the intervention points as a drug target in AD.
Collapse
|
13
|
Hoffmann T, Rahfeld JU, Schenk M, Ponath F, Makioka K, Hutter-Paier B, Lues I, Lemere CA, Schilling S. Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. Int J Mol Sci 2021; 22:ijms222111791. [PMID: 34769222 PMCID: PMC8584206 DOI: 10.3390/ijms222111791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.
Collapse
Affiliation(s)
- Torsten Hoffmann
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
- Correspondence: (T.H.); (S.S.)
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Falk Ponath
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Koki Makioka
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Birgit Hutter-Paier
- QPS Austria GmbH, Department of Neuropharmacology, Parkring 12, A-8074 Grambach, Austria;
| | - Inge Lues
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
| | - Cynthia A. Lemere
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
- Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
- Correspondence: (T.H.); (S.S.)
| |
Collapse
|
14
|
Armbrust F, Bickenbach K, Marengo L, Pietrzik C, Becker-Pauly C. The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119164. [PMID: 34699873 DOI: 10.1016/j.bbamcr.2021.119164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid β (Aβ) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aβ plaques in AD patient brains. Aβ peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the β- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the β-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aβ plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent β-secretase responsible for Aβ release in AD and as the most important therapeutic target for AD treatment. However, with respect to β-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aβ1-x, whereas N-terminally truncated Aβ forms are scarcely generated. However, these N-terminally truncated Aβ species such as Aβ2-x, Aβ3-x and Aβ4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aβ1-x peptides. Proteases such as meprin β, cathepsin B and ADAMTS4 were identified as alternative β-secretases being capable of generating these N-terminally truncated Aβ species from wild-type APP. However, neither meprin β nor cathepsin B are capable of generating N-terminally truncated Aβ peptides from APPswe. Hence, the role of BACE1 for the Aβ formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative β secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.
Collapse
Affiliation(s)
- Fred Armbrust
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Kira Bickenbach
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Christoph Becker-Pauly
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany.
| |
Collapse
|
15
|
Brain Renin-Angiotensin System as Novel and Potential Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221810139. [PMID: 34576302 PMCID: PMC8468637 DOI: 10.3390/ijms221810139] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The activation of the brain renin-angiotensin system (RAS) plays a pivotal role in the pathophysiology of cognition. While the brain RAS has been studied before in the context of hypertension, little is known about its role and regulation in relation to neuronal function and its modulation. Adequate blood flow to the brain as well as proper clearing of metabolic byproducts become crucial in the presence of neurodegenerative disorders such as Alzheimer's disease (AD). RAS inhibition (RASi) drugs that can cross into the central nervous system have yielded unclear results in improving cognition in AD patients. Consequently, only one RASi therapy is under consideration in clinical trials to modify AD. Moreover, the role of non-genetic factors such as hypercholesterolemia in the pathophysiology of AD remains largely uncharacterized, even when evidence exists that it can lead to alteration of the RAS and cognition in animal models. Here we revise the evidence for the function of the brain RAS in cognition and AD pathogenesis and summarize the evidence that links it to hypercholesterolemia and other risk factors. We review existent medications for RASi therapy and show research on novel drugs, including small molecules and nanodelivery strategies that can target the brain RAS with potential high specificity. We hope that further research into the brain RAS function and modulation will lead to innovative therapies that can finally improve AD neurodegeneration.
Collapse
|
16
|
Bayer TA. N-Truncated Aβ Starting at Position Four-Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer's Disease. Front Aging Neurosci 2021; 13:710579. [PMID: 34489680 PMCID: PMC8417877 DOI: 10.3389/fnagi.2021.710579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
The discussion of whether amyloid plaque Aβ is a valid drug target to fight Alzheimer’s disease (AD) has been a matter of scientific dispute for decades. This question can only be settled by successful clinical trials and the approval of disease-modifying drugs. However, many clinical trials with antibodies against different regions of the amyloid Aβ peptide have been discontinued, as they did not meet the clinical endpoints required. Recently, passive immunization of AD patients with Donanemab, an antibody directed against the N-terminus of pyroglutamate Aβ, showed beneficial effects in a phase II trial, supporting the concept that N-truncated Aβ is a relevant target for AD therapy. There is long-standing evidence that N-truncated Aβ variants are the main variants found in amyloid plaques besides full-length Aβ1–42, t, therefore their role in triggering AD pathology and as targets for drug development are of interest. While the contribution of pyroglutamate Aβ3–42 to AD pathology has been well studied in the past, the potential role of Aβ4–42 has been largely neglected. The present review will therefore focus on Aβ4–42 as a possible drug target based on human and mouse pathology, in vitro and in vivo toxicity, and anti-Aβ4-X therapeutic effects in preclinical models.
Collapse
Affiliation(s)
- Thomas A Bayer
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
17
|
Valverde A, Dunys J, Lorivel T, Debayle D, Gay AS, Caillava C, Chami M, Checler F. Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains. J Biol Chem 2021; 297:100963. [PMID: 34265307 PMCID: PMC8334387 DOI: 10.1016/j.jbc.2021.100963] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/25/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid β peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid β peptide, several N-terminally truncated fragments of amyloid β peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid β peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid β, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid β peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid β. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid β peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid β peptide and amyloid β 42-positive plaques and amyloid β 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid β peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Collapse
Affiliation(s)
- Audrey Valverde
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Julie Dunys
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Thomas Lorivel
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Delphine Debayle
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Anne-Sophie Gay
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Céline Caillava
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Mounia Chami
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|