1
|
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot. Comput Struct Biotechnol J 2022; 20:2713-2722. [PMID: 35685371 PMCID: PMC9168380 DOI: 10.1016/j.csbj.2022.05.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/06/2023] Open
Abstract
The first secretome about scallop byssal adhesion is profiled based on a new computational strategy. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives. The EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins are the main components of scallop byssus. A novel “nearby secretion” model of scallop byssus secretion and adhesion is proposed.
Secretome is involved in almost all physiological, developmental, and pathological processes, but to date there is still a lack of highly-efficient research strategy to comprehensively study the secretome of invertebrates. Adhesive secretion is a ubiquitous and essential physiological process in aquatic invertebrates with complicated protein components and unresolved adhesion mechanisms, making it a good subject for secretome profiling studies. Here we proposed a computational pipeline for systematic profiling of byssal secretome based on spatiotemporal transcriptomes of scallop. A total of 186 byssus-related proteins (BRPs) were identified, which represented the first characterized secretome of scallop byssal adhesion. Scallop byssal secretome covered almost all of the known structural elements and functional domains of aquatic adhesives, which suggested this secretome-profiling strategy had both high efficiency and accuracy. We revealed the main components of scallop byssus (including EGF-like domain containing proteins, the Tyr-rich proteins and 4C-repeats containing proteins) and the related modification enzymes primarily contributing to the rapid byssus assembly and adhesion. Spatiotemporal expression and co-expression network analyses of BRPs suggested a simultaneous secretion pattern of scallop byssal proteins across the entire region of foot and revealed their diverse functions on byssus secretion. In contrast to the previously proposed “root-initiated secretion and extension-based assembly” model, our findings supported a novel “foot-wide simultaneous secretion and in situ assembly” model of scallop byssus secretion and adhesion. Systematic analysis of scallop byssal secretome provides important clues for understanding the aquatic adhesive secretion process, as well as a common framework for studying the secretome of non-model invertebrates.
Collapse
|
2
|
Perez CJ, Mecklenburg L, Fernandez A, Cantero M, de Souza TA, Lin K, Dent SY, Montoliu L, Awgulewitsch A, Benavides F. Naked (N) mutant mice carry a nonsense mutation in the homeobox of Hoxc13. Exp Dermatol 2022; 31:330-340. [PMID: 34657330 PMCID: PMC11892394 DOI: 10.1111/exd.14469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/23/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Loss of function mutations in HOXC13 have been associated with Ectodermal Dysplasia-9, Hair/Nail Type (ECTD9) in consanguineous families, characterized by sparse to complete absence of hair and nail dystrophy. Here we characterize the spontaneous mouse mutation Naked (N) as a terminal truncation in the Hoxc13 (homeobox C13) gene. Similar to previous reports for homozygous Hoxc13 knock-out (KO) mice, homozygous N/N mice exhibit generalized alopecia with abnormal nails and a short lifespan. However, in contrast to Hoxc13 heterozygous KO mice, N/+ mice show generalized or partial alopecia, associated with loss of hair fibres, along with normal lifespan and fertility. Our data point to a lack of nonsense-mediated Hoxc13 transcript decay and the presence of the truncated mutant protein in N/N and N/+ hair follicles, thus suggesting a dominant-negative mutation. To our knowledge, this is the first report of a semi-dominant and potentially dominant-negative mutation affecting Hoxc13/HOXC13. Furthermore, recreating the N mutant allele in mice using CRISPR/Cas9-mediated genome editing resulted in the same spectrum of deficiencies as those associated with the spontaneous Naked mutation, thus confirming that N is indeed a Hoxc13 mutant allele. Considering the low viability of the Hoxc13 KO mice, the Naked mutation provides an attractive new model for studying ECTD9 disease mechanisms.
Collapse
Affiliation(s)
- Carlos J. Perez
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | | | - Almudena Fernandez
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 - ICB II, São Paulo - SP, Brazil
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
| | - Sharon Y.R. Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Texas, USA
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) Madrid, Spain and CIBERER-ISCIII, Madrid, Spain
| | - Alexander Awgulewitsch
- Department of Medicine and Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina (MUSC), 173 Ashley Avenue, CRI 606, Charleston, SC 29425
| | - Fernando Benavides
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Texas, USA
| |
Collapse
|
3
|
Namekata M, Yamamoto M, Goitsuka R. Nuclear localization of Meis1 in dermal papilla promotes hair matrix cell proliferation in the anagen phase of hair cycle. Biochem Biophys Res Commun 2019; 519:727-733. [PMID: 31543346 DOI: 10.1016/j.bbrc.2019.09.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
The dermal papilla (DP) is a key mesenchymal compartment of hair follicles that orchestrates mesenchymal-epithelial interaction regulating hair growth cycles. In the present study, we demonstrate that a TALE-family transcription factor, Meis1, is selectively localized in the nucleus of the DP in the anagen phase of the hair cycle. By using an ex vivo organ culture of vibrissae follicles, conditional Meis1 loss causes retardation in hair growth, accompanied by defects in cell proliferation of hair matrix cells. This cell proliferation defect is partly rescued by the addition of culture supernatants derived from Meis1-sufficient but not -deficient DP cells. These findings indicate that nuclear Meis1 in DP activate genes involved in secretion of some unknown factors, which promote proliferation of hair matrix cells in the anagen phase of the hair cycle.
Collapse
Affiliation(s)
- Masato Namekata
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan; Hair Gene Research Laboratory, Advangen Incorporation, Chiba, Japan
| | | | - Ryo Goitsuka
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan; Imaging Frontier Center, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
4
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
5
|
Wang J, Yu P, Wang H, He Y. HOXC13 and HSP27 Expression in Skin and the Periodic Growth of Secondary Fiber Follicles from Longdong Cashmere Goats Raised in Different Production Systems. Anat Rec (Hoboken) 2017; 301:742-752. [PMID: 29149771 DOI: 10.1002/ar.23724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/05/2017] [Accepted: 06/05/2017] [Indexed: 11/10/2022]
Abstract
This experiment was conducted to identify periodic changes in secondary follicles (SFs) over one year of extensive (grazed) and intensive (housed and fed supplement) farming of Longdong cashmere goats. One-year old goats (n = 24, 12 extensively fed and 12 intensively fed) were studied. The diameter, depth, density, activity, and ultra-structural features of SFs were assessed using light microscopy and transmission electron microscopy. HOXC13 and HSP27 expression were studied using immunohistochemistry and immunofluorescence method. The anagen stage in the extensively grazed goats was from April to September, but was longer (April to October) in the housed, supplementary fed group. The depth and activity of the SF in anagen and catagen differed (P < 0.05) between the groups. HSP27 and HOXC13 protein were present in both the epidermis and dermis, with HSP27 immunoreactivity highest in the hair shaft (HS), outer root sheath (ORS) and inner root sheath (IRS). HOXC13 expression was prominent in both the eprdermis and ORS. HSP27 and HOXC13 expression were prominent during anagen, and less so during catagen and telogen. In anagen, HSP27 expression in the HS, IRS, and ORS of the extensively fed group was higher than in the intensively fed group (p < 0.05). In contrast, HOXC13 expression in HS, IRS and ORS of the extensively fed group was lower than in the intensively fed group (P < 0.05). This suggests the growth of cashmere is influenced by nutrition and that housed goats could be used in cashmere production. Anat Rec, 301:742-752, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ping Yu
- Department of Otorhinolaryngology, Second Hospital Affiliated to Lanzhou University, Lanzhou, China
| | - Haifang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
He Y, Luo Y, Cheng L, Wang J, Liu X, Shao B, Cui Y. Determination of Secondary Follicle Characteristics, Density, Activity, and Hoxc13 Expression Pattern of Hexi Cashmere Goats Breed. Anat Rec (Hoboken) 2015; 298:1796-803. [PMID: 26097036 DOI: 10.1002/ar.23185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/01/2015] [Accepted: 04/30/2015] [Indexed: 11/07/2022]
Abstract
This experiment was conducted to identify some aspects of secondary follicle (SF) characteristics of Hexi cashmere goats at five different growing stages in one year in order and discover the expression pattern of Hoxc13 in a SF cycling to provide morphological basis for studying the growth of cashmere. Ten cashmere goats of one-year old (5 males, 5 females) were included in this study. The density and activity of SF were observed and measured by making paraffin sections, the ultra-structural features of SF were studied under transmission electron microscopy (TEM) by making ultra-thin sections, and the expression of Hoxc13 was investigated through the immunohistochemistry method. The average diameter of SF had the smallest value in the anagen stage, and significant difference (P < 0.05) was found between the anagen stage and other stages. The density of SF increased gradually through the different growing stages, and significant difference was found between the anagen and procatagen stages (P < 0.05). With an increase in time (months), the percentage of SF activity increased, and significant difference in the percentage of SF activity was found between the telogen and anagen stages (P < 0.05). At the telogen stage, the layers of connective tissue sheath (CTS) of SF were unclear, hemidesmosomes between the outer root sheath (ORS) and basement membrane disappeared, and dead cells were found at the top of the SF. The rudiments of new SF were found in the proanagen stage, CTS was thickened, and the cells of ORS were stretched out like fingers. At the anagen stage, the structure of SF was integral, and the inner root sheath (IRS) consisted of three concentric layers (Helen, Huxley, and Cuticle layers). The cells of Huxley's layer degenerated gradually, and pseudopodia were formed on the cells of ORS in the procatagen stage. At the catagen stage, the ORS was separated from the IRS, and IRS disappeared. Huxley's layer was absent in the inactive SF while, the ORS was present in the active SF. Hoxc 13 was expressed in the epidermis and sebaceous gland o, ORS, IRS, hair shaft of SF in the skin. Hoxc13 was expressed weakly during procatagen, catagen, and telogen stage, while with an increase in proanagen and anagen stage, significant difference was found between them. These findings demonstrated the ultra-structural features of SF could provide the useful activity criteria, and Hoxc13 associated with the SF activity.
Collapse
Affiliation(s)
- Yanyu He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.,Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Lixiang Cheng
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bin Shao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Abstract
INTRODUCTION Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. AREAS COVERED In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. EXPERT OPINION The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.
Collapse
Affiliation(s)
- Zenildo Santos
- Massachusetts General Hospital, Wellman Center for Photomedicine , Boston, MA 02114 , USA +1 617 726 6182 ; +1 617 726 6643 ;
| | | | | |
Collapse
|
8
|
Kasiri S, Ansari KI, Hussain I, Bhan A, Mandal SS. Antisense oligonucleotide mediated knockdown of HOXC13 affects cell growth and induces apoptosis in tumor cells and over expression of HOXC13 induces 3D-colony formation. RSC Adv 2012; 3:3260-3269. [PMID: 23495364 DOI: 10.1039/c2ra22006g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HOXC13 is a homeobox containing gene that plays crucial roles in hair development and origin of replication. Herein, we investigated the biochemical functions of HOXC13 and explored its potential roles in tumor cell viability. We have designed a phosphorothioate based antisense-oligonucleotide that specifically knockdown HOXC13 in cultured cells. Cell viability and cytotoxicity assays demonstrated that HOXC13 is essential for cell growth and viability. Antisense-mediated knockdown of HOXC13 affected the cell viability and induced apoptosis in cultured tumor cells. HOXC13 regulates the expression of cyclins and antisense-mediated knockdown of HOXC13 resulted in cell cycle arrest and apoptosis in colon cancer cells. Finally over expression of HOXC13 resulted in 3D-colony formation in soft-agar assay indicating its potential roles in cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Sahba Kasiri
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019
| | | | | | | | | |
Collapse
|
9
|
Runkel F, Hintze M, Griesing S, Michels M, Blanck B, Fukami K, Guénet JL, Franz T. Alopecia in a viable phospholipase C delta 1 and phospholipase C delta 3 double mutant. PLoS One 2012; 7:e39203. [PMID: 22723964 PMCID: PMC3378570 DOI: 10.1371/journal.pone.0039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/21/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface.
Collapse
Affiliation(s)
- Fabian Runkel
- Anatomisches Institut, Universität Bonn, Bonn, Germany
| | - Maik Hintze
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany
| | - Sebastian Griesing
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany
| | | | - Birgit Blanck
- Anatomisches Institut, Universität Bonn, Bonn, Germany
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Hachioji-city, Tokyo, Japan
| | - Jean-Louis Guénet
- Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Thomas Franz
- Anatomisches Institut, Universität Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
10
|
Jackson B, Brown SJ, Avilion AA, O'Shaughnessy RFL, Sully K, Akinduro O, Murphy M, Cleary ML, Byrne C. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier. J Cell Sci 2011; 124:1681-90. [PMID: 21511732 DOI: 10.1242/jcs.077552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.
Collapse
Affiliation(s)
- Ben Jackson
- Centre for Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The nude mutant gene Foxn1 is a HOXC13 regulatory target during hair follicle and nail differentiation. J Invest Dermatol 2010; 131:828-37. [PMID: 21191399 DOI: 10.1038/jid.2010.391] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among the Hox genes, homeobox C13 (Hoxc13) has been shown to be essential for proper hair shaft differentiation, as Hoxc13 gene-targeted (Hoxc13(tm1Mrc)) mice completely lack external hair. Because of the remarkable overt phenotypic parallels to the Foxn1(nu) (nude) mutant mice, we sought to determine whether Hoxc13 and forkhead box N1 (Foxn1) might act in a common pathway of hair follicle (HF) differentiation. We show that the alopecia exhibited by both the Hoxc13(tm1Mrc) and Foxn1(nu) mice is because of strikingly similar defects in hair shaft differentiation and that both mutants suffer from a severe nail dystrophy. These phenotypic similarities are consistent with the extensive overlap between Hoxc13 and Foxn1 expression patterns in the HF and the nail matrix. Furthermore, DNA microarray analysis of skin from Hoxc13(tm1Mrc) mice identified Foxn1 as significantly downregulated along with numerous hair keratin genes. This Foxn1 downregulation apparently reflects the loss of direct transcriptional control by HOXC13 as indicated by our results obtained through co-transfection and chromatin immunoprecipitation (ChIP) assays. As presented in the discussion, these data support a regulatory model of keratinocyte differentiation in which HOXC13-dependent activation of Foxn1 is part of a regulatory cascade controlling the expression of terminal differentiation markers.
Collapse
|
12
|
Ansari KI, Kasiri S, Hussain I, Mandal SS. Mixed lineage leukemia histone methylases play critical roles in estrogen-mediated regulation of HOXC13. FEBS J 2010; 276:7400-11. [PMID: 19922474 DOI: 10.1111/j.1742-4658.2009.07453.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
HOXC13, a homeobox-containing gene, is involved in hair development and human leukemia. The regulatory mechanism that drives HOXC13 expression is mostly unknown. Our studies have demonstrated that HOXC13 is transcriptionally activated by the steroid hormone estrogen (17beta-estradiol; E2). The HOXC13 promoter contains several estrogen-response elements (EREs), including ERE1 and ERE2, which are close to the transcription start site, and are associated with E2-mediated activation of HOXC13. Knockdown of the estrogen receptors (ERs) ERalpha and ERbeta suppressed E2-mediated activation of HOXC13. Similarly, knockdown of mixed lineage leukemia histone methylase (MLL)3 suppressed E2-induced activation of HOXC13. MLLs (MLL1-MLL4) were bound to the HOXC13 promoter in an E2-dependent manner. Knockdown of either ERalpha or ERbeta affected the E2-dependent binding of MLLs (MLL1-MLL4) into HOXC13 EREs, suggesting critical roles of ERs in recruiting MLLs in the HOXC13 promoter. Overall, our studies have demonstrated that HOXC13 is transcriptionally regulated by E2 and MLLs, which, in coordination with ERalpha and ERbeta, play critical roles in this process. Although MLLs are known to regulate HOX genes, the roles of MLLs in hormone-mediated regulation of HOX genes are unknown. Herein, we have demonstrated that MLLs are critical players in E2-dependent regulation of the HOX gene.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | |
Collapse
|
13
|
Ramot Y, Paus R, Tiede S, Zlotogorski A. Endocrine controls of keratin expression. Bioessays 2009; 31:389-99. [DOI: 10.1002/bies.200800121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
15
|
Potter CS, Peterson RL, Barth JL, Pruett ND, Jacobs DF, Kern MJ, Argraves WS, Sundberg JP, Awgulewitsch A. Evidence that the satin hair mutant gene Foxq1 is among multiple and functionally diverse regulatory targets for Hoxc13 during hair follicle differentiation. J Biol Chem 2006; 281:29245-55. [PMID: 16835220 DOI: 10.1074/jbc.m603646200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is increasingly evident that the molecular mechanisms underlying hair follicle differentiation and cycling recapitulate principles of embryonic patterning and organ regeneration. Here we used Hoxc13-overexpressing transgenic mice (also known as GC13 mice), known to develop severe hair growth defects and alopecia, as a tool for defining pathways of hair follicle differentiation. Gene array analysis performed with RNA from postnatal skin revealed differential expression of distinct subsets of genes specific for cells of the three major hair shaft compartments (cuticle, cortex, and medulla) and their precursors. This finding correlates well with the structural defects observed in each of these compartments and implicates Hoxc13 in diverse pathways of hair follicle differentiation. The group of medulla-specific genes was particularly intriguing because this included the developmentally regulated transcription factor-encoding gene Foxq1 that is altered in the medulladefective satin mouse hair mutant. We provide evidence that Foxq1 is a downstream target for Hoxc13 based on DNA binding studies as well as co-transfection and chromatin immunoprecipitation assays. Expression of additional medulla-specific genes down-regulated upon overexpression of Hoxc13 requires functional Foxq1 as their expression is ablated in hair follicles of satin mice. Combined, these results demonstrate that Hoxc13 and Foxq1 control medulla differentiation through a common regulatory pathway. The apparent regulatory interactions between members of the mammalian Hox and Fox gene families shown here may establish a paradigm for "cross-talk" between these two conserved regulatory gene families in different developmental contexts including embryonic patterning as well as organ development and renewal.
Collapse
Affiliation(s)
- Christopher S Potter
- Departments of Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|