1
|
You Y, Chen X, Chen X, Li H, Zhou R, Zhou J, Chen M, Peng B, Ji S, Kwan HY, Zou L, Yu J, Liu Y, Wu Y, Zhao X. Jiawei Yanghe Decoction suppresses breast cancer by regulating immune responses via JAK2/STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116358. [PMID: 36933872 DOI: 10.1016/j.jep.2023.116358] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Yanghe Decoction (JWYHD) is a widely used traditional Chinese medicine prescription in the clinical setting for the treatment of autoimmune diseases. Many studies showed that JWYHD has anti-tumor activities in cell and animal models. However, the anti-breast cancer effects of JWYHD and the underlying mechanisms of action remain unknown. AIM OF STUDY This study aimed to determine the anti-breast cancer effect and reveal the underlying mechanisms of action in vivo, in vitro and in silico. MATERIALS AND METHODS Orthotopic xenograft breast cancer mouse model and inflammatory zebrafish model were used to observe the anti-tumor effect and immune cell regulation of JWYHD. Moreover, the anti-inflammatory effect of JWYHD were evaluated by the expression of RAW 264.7 cells. JWYHD active ingredients were obtained by UPLC-MS/MS and potential targets were screened by network pharmacology. The therapeutic targets and signaling pathways predicted by computer were assessed by Western blot, real-time PCR (RT-PCR), immunohistochemistry (IHC) staining, and Enzyme-linked immunosorbent assays (ELISA) to explore the therapeutic mechanism of JWYHD against breast cancer. At last, Colivelin and Stattic were used to explore the effect of JWYHD on JAK2/STAT3 pathway. RESULTS JWYHD significantly decreased the tumor growth in a dose-dependent manner in the orthotopic xenograft breast cancer mouse model. Flow cytometry and IHC results indicated that JWYHD decreased the expressions of M2 macrophages and Treg while increasing M1 macrophages. Meanwhile, ELISA and Western blot results showed a decrease in IL-1β, IL-6, TNFα, PTGS2 and VEGFα in tumor tissue of JWYHD groups. The results were also verified in LPS-induced RAW264.7 cells and zebrafish inflammatory models. TUNEL assay and IHC results showed that JWYHD significantly induced apoptosis. Seventy-two major compounds in JWYHD were identified by UPLC-MS/MS and Network pharmacology. It was found that the significant binding affinity of JWYHD to TNFα, PTGS2, EGFR, STAT3, VEGFα and their expressions were inhibited by JWYHD. IHC and Western blot analysis showed that JWYHD could decrease the expression of JAK2/STAT3 pathway. Furthermore, Colivelin could reverse the decrease effect of JWYHD in vitro. CONCLUSION JWYHD exerts a significant anti-tumor effect mainly by inhibiting inflammation, activating immune responses and inducing apoptosis via the JAK2/STAT3 signaling pathway. Our findings provide strong pharmacological evidence for the clinical application of JWYHD in the management of breast cancer.
Collapse
Affiliation(s)
- Yanting You
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaomei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaohu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; School of Science, STEM College, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Ruisi Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Lifang Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jingtao Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, 523009, China.
| | - Xiaoshan Zhao
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Dong H, Zhu T, Zhang M, Wang D, Wang X, Huang G, Wang S, Zhang M. Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Front Bioeng Biotechnol 2021; 9:761302. [PMID: 34631688 PMCID: PMC8498195 DOI: 10.3389/fbioe.2021.761302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Osteonecrosis without effective early treatment eventually leads to the collapse of the articular surface and causes arthritis. For the early stages of osteonecrosis, core decompression combined with bone grafting, is a procedure worthy of attention and clinical trial. And the study of bone graft substitutes has become a hot topic in the area of osteonecrosis research. In recent years, polymers have received more attention than other materials due to their excellent performance. However, because of the harsh microenvironment in osteonecrosis, pure polymers may not meet the stringent requirements of osteonecrosis research. The combined application of polymers and various other substances makes up for the shortcomings of polymers, and to meet a broad range of requirements for application in osteonecrosis therapy. This review focuses on various applying polymers in osteonecrosis therapy, then discusses the development of biofunctionalized composite polymers based on the polymers combined with different bioactive substances. At the end, we discuss their prospects for translation to clinical practice.
Collapse
Affiliation(s)
- Hengliang Dong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dapeng Wang
- Department of Orthopedics, Siping Central Hospital, Siping, China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guanning Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuaishuai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Minglei Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Wang P, Li G, Qin W, Shi B, Liu FJ, Wang LL, Zhao BN, Sun TF, Lin L, Wang DD. Repair of osteonecrosis of the femoral head : 3D printed Cervi cornus Colla deproteinized bone scaffolds. DER ORTHOPADE 2019; 48:213-223. [PMID: 30656386 PMCID: PMC6449326 DOI: 10.1007/s00132-018-03678-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common joint disease and a major cause of morbidity. Objective In this study Cervi cornus Colla (CCC) deproteinized bone scaffolds were designed and three dimensional (3D)-printed for the repair of ONFH in rats. Material and methods The CCC-deproteinized bone scaffolds were 3D-printed using polycaprolactone mixed with the CCC-deproteinized bone powder. The scaffolds were viewed under a scanning electron microscope and subjected to compression analysis. Osteoblasts were isolated from rats and coated onto the scaffolds. Cell proliferation assays were performed with the MTT (3‑[4,5-dimethylthiazole‑2]-2,5-diphenyltetrazolium bromide) kit from Promega. An ONFH was induced in rats and a CCC-deproteinized bone scaffold was implanted into the necrotic femoral head. General observations, X‑ray imaging, and pathological examination of the femoral head were performed to evaluate the treatment of ONFH in the rats. Results The scaffolds were porous with a mean pore diameter of 315.70 ± 41.52 nm and a porosity of 72.86 ± 5.45% and exhibited favorable mechanical properties and degradation. In vitro assays showed that osteoblasts accumulated in the pores and adhered to the scaffolds. The CCC-deproteinized bone scaffolds enhanced the proliferation of osteoblasts. The in vivo experiments revealed that the general observation score of rats in the CCC-scaffold implanted group was significantly higher than that in the control group. The X‑ray images showed significant alleviation of ONFH in the CCC-deproteinized bone scaffold implanted rats. The femoral heads of rats in the treatment group showed less destruction or ossification of cartilage cells, few bone cement lines, very little necrosis or irregularities on the cartilage surface and only a small amount of inflammatory cell infiltration in the medullary cavity. Conclusion These results suggest that CCC-deproteinized bone scaffold implants facilitated the repair of ONFH in rats. This research provides a new therapeutic approach for the repair of early and mid-term ONFH.
Collapse
Affiliation(s)
- Ping Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 300072, Tianjin, China
- Shandong Academy of Chinese Medicine, 250014, Jinan, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 300072, Tianjin, China
| | - Wen Qin
- Shandong University Hospital, 250100, Jinan, China
| | - Bin Shi
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 250062, Jinan, China.
| | - Fan-Jie Liu
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 250062, Jinan, China
| | - Lei-Lei Wang
- Key Laboratory for Applied Microbiology of Shandong Province, Ecology Institute of Shandong Academy of Sciences, 250014, Jinan, China
| | - Bo-Nian Zhao
- Shandong Academy of Chinese Medicine, 250014, Jinan, China
| | - Tie-Feng Sun
- Shandong Academy of Chinese Medicine, 250014, Jinan, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 300072, Tianjin, China.
| | - Dan-Dan Wang
- Shandong Medicinal Biotechnology Centre, Shandong Academy of Medical Sciences, 250062, Jinan, China.
| |
Collapse
|
4
|
Liu M, Han X, Cui D, Yan Y, Li L, Hu W. Post-transcriptional regulation of miRNA-15a and miRNA-15b on VEGFR gene and deer antler cell proliferation. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Background
Deer antler is the only regenerative organ in mammals, the regeneration of antler is not only the regeneration of bone tissue, but also accompanied by the regeneration of nerves, blood vessels and so on. The purpose of the current study was to explore the effect of miRNA-15a and miRNA-15b on the regulation of sika deer vascular endothelial growth factor receptor (VEGFR) during rapid antler growth.
Materials and methods
The VEGFR 3′-UTR was analyzed by bioinformatics software to identify the highly matched miRNAs. After transfected with miRNA mimics, the expression of selected miRNAs were measured by RT-qPCR and the relative expression level of VEGFR protein was detected by Western Blot. Dual-luciferase activity assay was used to determine the target relationship between VEGFR and miRNAs. The cartilage cell proliferation and telomerase activity were measured by MTT kit and TRAP assay, respectively.
Results
The VEGFR 3′-UTR contains a binding site for miRNA-15a and miRNA-15b. Over-expression of miRNA-15a and miRNA-15b, which significantly reduced the expression level of VEGFR protein, inhibited the proliferation of cartilage cells, and decreased the telomerase activity of cartilage cells in vitro.
Conclusion
miRNA-15a and miRNA-15b represent novel regulatory factors of VEGFR expression in deer antler.
Collapse
|
5
|
Choi JW, Nam KM, Choi HR, Huh CH, Park KC. Interactive Roles of Activin A in Epidermal Regeneration. Ann Dermatol 2018; 30:755-757. [PMID: 33911529 PMCID: PMC7992442 DOI: 10.5021/ad.2018.30.6.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jee Woong Choi
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Kyung Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Chang Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
6
|
Choi JW, Nam KM, Choi HR, Lee DH, Huh CH, Park KC. Decreased Galectin-3 and -7 Expressions in Old-Aged Skin and Their Differential Expression in Skin Equivalents. Ann Dermatol 2018; 30:375-378. [PMID: 29853761 PMCID: PMC5929964 DOI: 10.5021/ad.2018.30.3.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/24/2017] [Accepted: 06/11/2017] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jee Woong Choi
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Kyung Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
7
|
Yang H, Shen Y, Xu Y, Maqueda AS, Zheng J, Wu Q, Tam JP. A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection. Int J Nanomedicine 2015; 10:4947-55. [PMID: 26345994 PMCID: PMC4531023 DOI: 10.2147/ijn.s82291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gelatinous Chinese medicines made from mammalian skin or horn or reptile shell are a very important type of animal-derived Chinese medicine. They have been extensively used either as both hemopoietic and hemostatic agents to treat vertigo, palpitation, hematuria, and insomnia in traditional Chinese medicine clinics; consumed as a popular tonic for weaker persons such as the elderly or women after giving birth; or further manufactured to health supplements for certain populations. However, they cannot be discriminated from each other by only using the routine approach in the Chinese Pharmacopoeia, as it lacks enough specificity and, consequently, and the requirements can be met even by adding assayed ingredients. In this study, our efforts to differentiate three gelatinous Chinese medicines, Asini Corii Colla, Cervi Cornus Colla, and Testudinis Carapacis ET Plastri Colla, are presented, and a novel strategy based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detector analysis is proposed herein. Fourteen diagnostic fragments identified from the digests of these medicines were exclusively selected for their discrimination. By taking advantage of the favorable features of this strategy, it is feasible and convenient to identify enzymatic-digested peptides originated from signature proteins in each medicine, which thus could be employed as potential biomarkers for their form of raw medicinal material, and the pulverized and the complex especially, that being the direct basis for authentication purpose.
Collapse
Affiliation(s)
- Huan Yang
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China ; Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | - Yuping Shen
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Ying Xu
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Aida Serra Maqueda
- Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| | - Jie Zheng
- Department of Chinese Materia Medica and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qinan Wu
- Department of Chinese Medicine Authentication, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - James P Tam
- Division of Structural Biology and Biochemistry, School of Biological Sciences, College of Science, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
Li H, Kim J, Hahn HG, Yun J, Jeong HS, Yun HY, Baek KJ, Kwon NS, Min YS, Park KC, Kim DS. KHG26792 Inhibits Melanin Synthesis in Mel-Ab Cells and a Skin Equivalent Model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:249-54. [PMID: 24976765 PMCID: PMC4071178 DOI: 10.4196/kjpp.2014.18.3.249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 01/05/2023]
Abstract
The purpose of this study is to characterize the effects of KHG26792 (3-(naphthalen-2-yl(propoxy) methyl)azetidine hydrochloride), a potential skin whitening agent, on melanin synthesis and identify the underlying mechanism of action. Our data showed that KHG26792 significantly reduced melanin synthesis in a dose-dependent manner. Additionally, KHG26792 downregulated microphthalmia-associated transcription factor (MITF) and tyrosinase, the rate-limiting enzyme in melanogenesis, although tyrosinase was not inhibited directly. KHG26792 activated extracellular signal-regulated kinase (ERK), whereas an ERK pathway inhibitor, PD98059, rescued KHG26792-induced hypopigmentation. These results suggest that KHG26792 decreases melanin production via ERK activation. Moreover, the hypopigmentary effects of KHG26792 were confirmed in a pigmented skin equivalent model using Cervi cornus Colla (deer antler glue), in which the color of the pigmented artificial skin became lighter after treatment with KHG26792. In summary, our findings suggest that KHG26792 is a novel skin whitening agent.
Collapse
Affiliation(s)
- Hailan Li
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Jandi Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hoh-Gyu Hahn
- Organic Chemistry Laboratory, Korea Institute of Science & Technology, Seoul 136-791, Korea
| | - Jun Yun
- Organic Chemistry Laboratory, Korea Institute of Science & Technology, Seoul 136-791, Korea
| | - Hyo-Soon Jeong
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Kwang Jin Baek
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Nyoun Soo Kwon
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Young Sil Min
- Department of Herb Industry, Jungwon University, Goesan 367-805, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
9
|
Choi HR, Nam KM, Kim DS, Huh CH, Na JI, Park KC. Cervi cornus Colla (deer antler glue) induce epidermal differentiation in the reconstruction of skin equivalents. Int J Cosmet Sci 2013; 35:281-5. [PMID: 23534702 DOI: 10.1111/ics.12045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 02/23/2013] [Indexed: 12/15/2022]
Abstract
In the reconstruction of skin equivalents (SEs), keratinocyte differentiation is important because epidermal differentiation is closely related with barrier function. The aim of this study was to investigate the effects of Cervi cornus Colla (CCC) on the stem cell activity and epidermal differentiation in the reconstruction of skin equivalent. Four different models were constructed according to different composition of dermal substitute. Results showed similar morphologic findings when hyaluronic acid (HA) and/or CCC was added. But, immunohistochemical staining showed that p63 was significantly increased by addition of HA and/or CCC. Increased staining of integrin α6 and β1 was variably observed when HA and/or CCC was added to make dermal substitute. These finding showed that addition of HA and/or CCC may affect the stem cell activity in the reconstruction of skin. Furthermore, filaggrin expression was much increased when CCC was added. It showed that epidermal differentiation was significantly improved by addition of CCC. In conclusion, simultaneous presence of HA and CCC contributed to the stem cell activity and epidermal differentiation in the reconstruction of SE. Legislation in the EU prohibits marketing cosmetics and personal care products that contain constituents that have been examined through animal experiments. To avoid these limitations, SEs can be used for testing the safety or the efficacy of cosmetic ingredients. Therefore, our results showed that combined use of HA and CCC can be helpful for the reconstruction of SE with good stem cell activity and epidermal differentiation.
Collapse
Affiliation(s)
- H-R Choi
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea
| | | | | | | | | | | |
Collapse
|