1
|
Flori E, Cavallo A, Mosca S, Kovacs D, Cota C, Zaccarini M, Di Nardo A, Bottillo G, Maiellaro M, Camera E, Cardinali G. JAK/STAT Inhibition Normalizes Lipid Composition in 3D Human Epidermal Equivalents Challenged with Th2 Cytokines. Cells 2024; 13:760. [PMID: 38727296 PMCID: PMC11083560 DOI: 10.3390/cells13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Derangement of the epidermal barrier lipids and dysregulated immune responses are key pathogenic features of atopic dermatitis (AD). The Th2-type cytokines interleukin IL-4 and IL-13 play a prominent role in AD by activating the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) intracellular signaling axis. This study aimed to investigate the role of JAK/STAT in the lipid perturbations induced by Th2 signaling in 3D epidermal equivalents. Tofacitinib, a low-molecular-mass JAK inhibitor, was used to screen for JAK/STAT-mediated deregulation of lipid metabolism. Th2 cytokines decreased the expression of elongases 1, 3, and 4 and serine-palmitoyl-transferase and increased that of sphingolipid delta(4)-desaturase and carbonic anhydrase 2. Th2 cytokines inhibited the synthesis of palmitoleic acid and caused depletion of triglycerides, in association with altered phosphatidylcholine profiles and fatty acid (FA) metabolism. Overall, the ceramide profiles were minimally affected. Except for most sphingolipids and very-long-chain FAs, the effects of Th2 on lipid pathways were reversed by co-treatment with tofacitinib. An increase in the mRNA levels of CPT1A and ACAT1, reduced by tofacitinib, suggests that Th2 cytokines promote FA beta-oxidation. In conclusion, pharmacological inhibition of JAK/STAT activation prevents the lipid disruption caused by the halted homeostasis of FA metabolism.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Alessia Cavallo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Daniela Kovacs
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Carlo Cota
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (C.C.); (M.Z.)
| | - Anna Di Nardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Grazia Bottillo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Miriam Maiellaro
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (E.F.); (A.C.); (S.M.); (D.K.); (A.D.N.); (G.B.); (M.M.); (G.C.)
| |
Collapse
|
2
|
Thalheim T, Schneider MR. Skin single-cell transcriptomics reveals a core of sebaceous gland-relevant genes shared by mice and humans. BMC Genomics 2024; 25:137. [PMID: 38310227 PMCID: PMC10837983 DOI: 10.1186/s12864-024-10008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) has been widely applied to dissect cellular heterogeneity in normal and diseased skin. Sebaceous glands, essential skin components with established functions in maintaining skin integrity and emerging roles in systemic energy metabolism, have been largely neglected in scRNA-seq studies. METHODS Departing from mouse and human skin scRNA-seq datasets, we identified gene sets expressed especially in sebaceous glands with the open-source R-package oposSOM. RESULTS The identified gene sets included sebaceous gland-typical genes as Scd3, Mgst1, Cidea, Awat2 and KRT7. Surprisingly, however, there was not a single overlap among the 100 highest, exclusively in sebaceous glands expressed transcripts in mouse and human samples. Notably, both species share a common core of only 25 transcripts, including mitochondrial and peroxisomal genes involved in fatty acid, amino acid, and glucose processing, thus highlighting the intense metabolic rate of this gland. CONCLUSIONS This study highlights intrinsic differences in sebaceous lipid synthesis between mice and humans, and indicates an important role for peroxisomal processes in this context. Our data also provides attractive starting points for experimentally addressing novel candidates regulating sebaceous gland homeostasis.
Collapse
Affiliation(s)
- Torsten Thalheim
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Härtelstr. 16-18, 04107, Leipzig, Germany
- Present Address: Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, Leipzig, 04103, Germany.
| |
Collapse
|
3
|
Sorg O, Nocera T, Fontao F, Castex-Rizzi N, Garidou L, Lauze C, Le Digabel J, Josse G, Saurat JH. Lipid Droplet Proteins in Acne Skin: A Sound Target for the Maintenance of Low Comedogenic Sebum and Acne-Prone Skin Health. JID INNOVATIONS 2021; 1:100057. [PMID: 34909752 PMCID: PMC8659390 DOI: 10.1016/j.xjidi.2021.100057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 11/06/2022] Open
Abstract
In adipocytes and sebocytes, lipid droplet proteins control the storage of lipids in organized droplets and their release on demand. The contribution of lipid droplet proteins to the pathogenesis of acne is plausible because they control the levels of comedogenic free fatty acids. The expression of two lipid droplet proteins, CIDEA and PLIN2, was analyzed in the skin of patients with acne by immunohistochemistry and western blotting. The design of clinical protocols allowed correlating the expression of CIDEA and PLIN2 with both comedogenesis and the release of free fatty acids. Both proteins were detected by immunohistochemistry in the sebaceous glands of patients with acne, with a disturbed expression pattern of PLIN2 compared with that in the controls. Higher levels of PLIN2 and CIDEA, as detected by western blotting in the infundibulum, significantly correlated with lower ongoing comedogenesis over 48 weeks of Silybummarianum fruit extract application. Accordingly, free fatty acid release from sebum triglycerides was significantly decreased, as shown with two distinct methods. The data are consistent with the expected role of PLIN2 and CIDEA in the prevention of comedogenic free fatty acid release. Modulation of PLIN2 and CIDEA expression appears as a sound target for the maintenance of low comedogenic sebum and acne-prone skin health.
Collapse
Affiliation(s)
- Olivier Sorg
- Clinical Pharmacology and Toxicology Unit, University of Geneva, Geneva, Switzerland
| | - Thérèse Nocera
- Clinical Skin Research Centre, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, Toulouse University Hospital, Toulouse, France
| | - Fabienne Fontao
- Clinical Pharmacology and Toxicology Unit, University of Geneva, Geneva, Switzerland
| | | | - Lucile Garidou
- Pharmacology Department, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Christophe Lauze
- Clinical Skin Research Centre, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, Toulouse University Hospital, Toulouse, France
| | - Jimmy Le Digabel
- Clinical Skin Research Centre, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, Toulouse University Hospital, Toulouse, France
| | - Gwendal Josse
- Clinical Skin Research Centre, Pierre Fabre Dermo-Cosmétique, Toulouse, France.,Dermatology Department, Toulouse University Hospital, Toulouse, France
| | - Jean-Hilaire Saurat
- Clinical Pharmacology and Toxicology Unit, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Liu P, Huang Q, Khan M, Xu N, Yao H, Lin JM. Microfluidic Probe for In-Situ Extraction of Adherent Cancer Cells to Detect Heterogeneity Difference by Electrospray Ionization Mass Spectrometry. Anal Chem 2020; 92:7900-7906. [PMID: 32366092 DOI: 10.1021/acs.analchem.0c01200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathological studies of cancer tissues and cell molecules could provide an early diagnosis for the treatment of cancer. In this work, we have designed a microfluidic surface extractor (MSE). The MSE has been coupled with electrospray mass spectrometry (extraction reagent, methanol; optimum flow rate, 0.5 mL/h) to analyze the phospholipid content of different tumor cells. Three types of cancer cell lines, including A549 cells, HepG2 cells, and U87 cells, were investigated, and the principle component analysis (PCA: linear discriminant analysis (LDA), PC1 97.2%; PC2, 2.8%) was carried out to analyze the difference in the lipid contents. The LDA revealed heterogeneity among the cancer cells. The designed MSE could have potential applications in the clinical analysis of cancer tissues.
Collapse
Affiliation(s)
- Po Liu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiushi Huang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mashooq Khan
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
6
|
Lafyatis R, Mantero JC, Gordon J, Kishore N, Carns M, Dittrich H, Spiera R, Simms RW, Varga J. Inhibition of β-Catenin Signaling in the Skin Rescues Cutaneous Adipogenesis in Systemic Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial of C-82. J Invest Dermatol 2017; 137:2473-2483. [PMID: 28807667 DOI: 10.1016/j.jid.2017.06.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/18/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested that Wnts might contribute to skin fibrosis in systemic sclerosis (SSc) by affecting the differentiation of pluripotent dermal cells. We tested C-82, a therapeutic that inhibits canonical Wnt signaling by blocking the interaction of the protein CBP with β-Catenin and inhibiting Wnt-activated genes. We used a trial design formulating C-82 for topical application and conducting a placebo-controlled, double-blinded clinical trial in which patients with diffuse cutaneous SSc were treated with C-82 or placebo on opposite forearms. C-82- compared with placebo-treated forearms did not show any clinical effect. Skin biopsies performed before and after treatment showed a very weak trend toward improvement in the C-82-treated skin of biomarkers of local skin disease, THBS1 and COMP. However, on microarray analysis C-82 treatment strongly up-regulated two clusters of genes that correlate negatively with the severity of SSc skin disease. These clusters are highly associated with metabolism and one gene, PLIN2, expressed only by sebocytes and subcutaneous fat cells. These changes in gene expression strongly support a role for Wnts in differentiation of pluripotent cells into profibrotic fibroblasts and the potential for C-82 with longer treatment to promote fat regeneration in SSc skin.
Collapse
Affiliation(s)
- Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Julio C Mantero
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jessica Gordon
- Rheumatology Division, Hospital for Special Surgery, New York, New York, USA
| | - Nina Kishore
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Mary Carns
- Rheumatology Division, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Howard Dittrich
- Abboud CV Research Center, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Robert Spiera
- Rheumatology Division, Hospital for Special Surgery, New York, New York, USA
| | - Robert W Simms
- Division of Rheumatology, Boston University Medical Center, Boston, Massachusetts, USA
| | - John Varga
- Rheumatology Division, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Kimmel AR, Sztalryd C. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis. Annu Rev Nutr 2017; 36:471-509. [PMID: 27431369 DOI: 10.1146/annurev-nutr-071813-105410] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis.
Collapse
Affiliation(s)
- Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, Maryland 20892;
| | - Carole Sztalryd
- The Geriatric Research Education and Clinical Center, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201.,Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201;
| |
Collapse
|