1
|
Brown C, Mitsch M, Blankenship K, Campbell C, Pelanne M, Sears J, Bell A, Olivier AK, Ross MK, Archer T, Kaplan BLF. Canine immune cells express high levels of CB 1 and CB 2 cannabinoid receptors and cannabinoid-mediated alteration of canine cytokine production is vehicle-dependent. Vet Immunol Immunopathol 2023; 265:110667. [PMID: 37931433 DOI: 10.1016/j.vetimm.2023.110667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
With the increased popularity and societal acceptance of marijuana and cannabidiol (CBD) use in humans, there is an interest in using cannabinoids in veterinary medicine. There have been a few placebo-controlled clinical trials in dogs suggesting that cannabis-containing extracts are beneficial for dogs with inflammatory diseases such as osteoarthritis, and there is growing interest in their immunosuppressive potential for the treatment of immune-mediated diseases. Since cannabinoids exhibit anti-inflammatory and immunosuppressive effects in many species, the purpose of these studies was to examine whether the plant-derived cannabinoids, CBD and Δ9-tetrahydrocannabinol (THC), would also suppress immune function in canine peripheral blood mononuclear cells (PBMCs). Another goal was to characterize expression of the cannabinoid receptors, CB1 and CB2, in canine immune cells. We hypothesized that CBD and THC would suppress stimulated cytokine expression and that both cannabinoid receptors would be expressed in canine immune cells. Surprisingly, cannabinoid suppressive effects in canine PMBCs were quite modest, with the most robust effect occurring at early stimulation times and predominantly by THC. We further showed that cannabinoid-mediated suppression was dog- and vehicle-dependent with CBD and THC delivered in dimethyl sulfoxide (DMSO) producing more immune suppressive effects as compared to ethanol (ETOH). PCR, flow cytometry, and immunohistochemical staining demonstrated that both CB1 and CB2 are expressed in canine immune cells. Together these data show that canine immune cells are sensitive to suppression by cannabinoids, but more detailed studies are needed to further understand the mechanisms and broad effects of these compounds in the dog.
Collapse
Affiliation(s)
- Clare Brown
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew Mitsch
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Karis Blankenship
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Carly Campbell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Mimi Pelanne
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Jaylan Sears
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Abigail Bell
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Todd Archer
- Department of Clinical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS, USA.
| |
Collapse
|
2
|
Kytikova OY, Denisenko YK, Novgorodtseva TP, Kovalenko IS. Cannabinoids And Cannabinoid-Like Compounds: Biochemical Characterization And Pharmacological Perspectives. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Publication interest in cannabinoids, including phytocannabinoids, endogenous cannabinoids, synthetic cannabinoids and cannabinomimetic compounds, is due to the therapeutic potential of these compounds in inflammatory pathology. Since recent years, scientific interest was focused on compounds with cannabinomimetic activity. The therapeutic use of phytocannabinoids and endocannabinoids is somewhat limited due to unresolved issues of dosing, toxicity and safety in humans, while cannabinoid-like compounds combine similar therapeutic effects with a high confirmed safety. Targets for endocannabinoids and phytocannabinoids are endocannabinoid receptors 1 and 2, G protein-coupled receptors (GPCRs), peroxisome proliferator-activated receptors (PPARs), and transient receptor potential ion channels (TRPs). Non-endocannabinoid N-acylethanolamines do not interact with cannabinoid receptors and exhibit agonist activity towards non-cannabinoid receptors, such as PPARs, GPCRs and TRPs. This literature review includes contemporary information on the biological activity, metabolism and pharmacological properties of cannabinoids and cannabinoid-like compounds, as well as their receptors. We established that only a few studies were devoted to the relationship of non-endocannabinoid N-acylethanolamines with non-cannabinoid receptors, such as PPARs, GPCRs, and also with TRPs. We have focused on issues that were insufficiently covered in the published sources in order to identify gaps in existing knowledge and determine the prospects for scientific research.
Collapse
|
3
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
4
|
Graczyk M, Lewandowska AA, Dzierżanowski T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26154551. [PMID: 34361704 PMCID: PMC8347461 DOI: 10.3390/molecules26154551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | | - Tomasz Dzierżanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland
- Correspondence:
| |
Collapse
|
5
|
Maghfour J, Rietcheck H, Szeto MD, Rundle CW, Sivesind TE, Dellavalle RP, Lio P, Dunnick CA, Fernandez J, Yardley H. Tolerability profile of topical cannabidiol and palmitoylethanolamide: a compilation of single-centre randomized evaluator-blinded clinical and in vitro studies in normal skin. Clin Exp Dermatol 2021; 46:1518-1529. [PMID: 34022073 DOI: 10.1111/ced.14749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND An increasing number of studies have investigated the adverse effect profile of oral cannabinoids; however, few studies have provided sufficient data on the tolerability of topical cannabinoids in human participants. AIM To assess the tolerability profile of several commercial topical formulations containing cannabidiol (CBD) and palmitoylethanolamide (PEA) on the skin of healthy human participants. METHODS Three human clinical trials and one in vitro study were conducted. The potential for skin irritation, sensitization and phototoxicity of several products, were assessed via patch testing on healthy human skin. The products assessed included two formulations containing CBD and PEA, one containing hemp seed oil and four concentrations of CBD alone. Ocular toxicity was tested using a traditional hen's egg chorioallantoic membrane model with three CBD, PEA and hemp seed oil formulations. RESULTS There was no irritation or sensitization of the products evident via patch testing on healthy participants. Additionally, mild phototoxicity of a hemp seed oil product was found at the 48-h time point compared with the negative control. The in vitro experiment demonstrated comparable effects of cannabinoid products with historically nonirritating products. CONCLUSION These specific formulations of CBD- and PEA-containing products are nonirritating and nonsensitizing in healthy adults, and further encourage similar research assessing their long-term safety and efficacy in human participants with dermatological diseases. There are some limitations to the study: (i) external validity may be limited as formulations from a single manufacturer were used for this study, while vast heterogeneity exists across unregulated, commercial CBD products on the market; and (ii) products were assessed only on normal, nondiseased human skin, and therefore extrapolation to those with dermatological diseases cannot be assumed.
Collapse
Affiliation(s)
- J Maghfour
- Department of Dermatology, Henry Ford Health System, Detroit, MI, USA
| | - H Rietcheck
- Dermatology, University of Colorado, Aurora, CO, USA
| | - M D Szeto
- Dermatology, University of Colorado, Aurora, CO, USA
| | - C W Rundle
- Dermatology, University of Colorado, Aurora, CO, USA
| | - T E Sivesind
- Dermatology, University of Colorado, Aurora, CO, USA
| | | | - P Lio
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - C A Dunnick
- Dermatology, University of Colorado, Aurora, CO, USA
| | | | - H Yardley
- CQ Science, Denver, CO, USA.,Naturally Curious Consulting, Boulder, CO, USA
| |
Collapse
|
6
|
Soeberdt M, Kilic A, Abels C. Current and emerging treatments targeting the neuroendocrine system for disorders of the skin and its appendages. Exp Dermatol 2020; 29:801-813. [DOI: 10.1111/exd.14145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| |
Collapse
|