1
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
2
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
3
|
Critical Role of Aquaporins in Cancer: Focus on Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14174182. [PMID: 36077720 PMCID: PMC9455074 DOI: 10.3390/cancers14174182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Aquaporins are proteins able to regulate the transfer of water and other small substances such as ions, glycerol, urea, and hydrogen peroxide across cellular membranes. AQPs provide for a huge variety of physiological phenomena; their alteration provokes several types of pathologies including cancer and hematological malignancies. Our review presents data revealing the possibility of employing aquaporins as biomarkers in patients with hematological malignancies and evaluates the possibility that interfering with the expression of aquaporins could represent an effective treatment for hematological malignancies. Abstract Aquaporins are transmembrane molecules regulating the transfer of water and other compounds such as ions, glycerol, urea, and hydrogen peroxide. Their alteration has been reported in several conditions such as cancer. Tumor progression might be enhanced by aquaporins in modifying tumor angiogenesis, cell volume adaptation, proteases activity, cell–matrix adhesions, actin cytoskeleton, epithelial–mesenchymal transitions, and acting on several signaling pathways facilitating cancer progression. Close connections have also been identified between the aquaporins and hematological malignancies. However, it is difficult to identify a unique action exerted by aquaporins in different hemopathies, and each aquaporin has specific effects that vary according to the class of aquaporin examined and to the different neoplastic cells. However, the expression of aquaporins is altered in cell cultures and in patients with acute and chronic myeloid leukemia, in lymphoproliferative diseases and in multiple myeloma, and the different expression of aquaporins seems to be able to influence the efficacy of treatment and could have a prognostic significance, as greater expression of aquaporins is correlated to improved overall survival in leukemia patients. Finally, we assessed the possibility that modifying the aquaporin expression using aquaporin-targeting regulators, specific monoclonal antibodies, and even aquaporin gene transfer could represent an effective therapy of hematological malignancies.
Collapse
|
4
|
Abstract
Aquaporins (AQPs) are a family of transmembrane water channel proteins, which were initially characterized as a novel protein family that plays a vital role in transcellular and transepithelial water movement. AQP1, AQP2, AQP4, AQP5, and AQP8 are primarily water selective, whereas AQP3, AQP7, AQP9, and AQP10 (called “aqua-glyceroporins”) also transport glycerol and other small solutes. Recently, multiple reports have suggested that AQPs have important roles in cancer cell growth, migration, invasion, and angiogenesis, each of which is important in human carcinogenesis. Here, we review recent data concerning the involvement of AQPs in tumor growth, angiogenesis, and metastasis and explore the expression profiles from various resected cancer samples to further dissect the underlying molecular mechanisms. Moreover, we discuss the potential role of AQPs during the development of genomic instability and performed modeling to describe the integration of binding between AQPs with various SH3 domain binning adaptor molecules. Throughout review and discussion of numerous reports, we have tried to provide key evidence that AQPs play key roles in tumor biology, which may provide a unique opportunity in designing a novel class of anti-tumor agents.
Collapse
Affiliation(s)
- Chul So Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - David Moon
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| | - Sung Koo Kang
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins Medical Institution, Baltimore, MD, United States.,HJM Cancer Research Foundation Corporation, Lutherville, MD, United States
| |
Collapse
|
5
|
Wang L, Huo D, Zhu H, Xu Q, Gao C, Chen W, Zhang Y. Deciphering the structure, function, expression and regulation of aquaporin-5 in cancer evolution. Oncol Lett 2021; 21:309. [PMID: 33732385 DOI: 10.3892/ol.2021.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, the morbidity rate resulting from numerous types of malignant tumor has increased annually, and the treatment of tumors has been attracting an increasing amount of attention. A number of recent studies have revealed that the water channel protein aquaporin-5 (AQP5) has become a major player in multiple types of cancer. AQP5 is abnormally expressed in a variety of tumor tissues or cells and has multiple effects on certain biological functions of tumors, such as regulating the proliferation, apoptosis and migration of tumor cells. It has been suggested that AQP5 may play an important role in the process of tumor development, opening up a new field of tumor research. The present review highlighted the structure of AQP5 and its role in tumor progression. Furthermore, the expression of AQP5 in different malignant neoplasms was summarized. In addition, the influence of not only drugs, but also different compounds on AQP5 were summarized. In conclusion, according to the findings in the present review, AQP5 has potential as a novel therapeutic target in human cancer, and other AQPs should be similarly investigated.
Collapse
Affiliation(s)
- Liping Wang
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Da Huo
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Haiyan Zhu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Qian Xu
- Department of Oncology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Wenfeng Chen
- Department of Science and Education, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yixiang Zhang
- Department of Respiratory, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
6
|
Kordowitzki P, Kranc W, Bryl R, Kempisty B, Skowronska A, Skowronski MT. The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals. Cells 2020; 9:cells9122570. [PMID: 33271827 PMCID: PMC7760214 DOI: 10.3390/cells9122570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa. It is noteworthy that aquaporins are relevant for the physiological function of specific parts in the female reproductive system, which will be presented in detail in the first section of this review. Moreover, they are relevant in different pathologies in the female reproductive system. The contribution of aquaporins in selected reproductive disorders and aging will be summarized in the second section of this review, followed by a section dedicated to aquaporin-related proteins. Since the relevance of aquaporins for the male reproductive system has been reviewed several times in the recent past, this review aims to provide an update on the distribution and impact of aquaporins only in the female reproductive system. Therefore, this paper seeks to determine the physiological and patho-physiological relevance of aquaporins on female reproduction, and female reproductive aging.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (R.B.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Correspondence: ; Tel.: +48-56-611-2231
| |
Collapse
|
7
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
8
|
Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol Oncol Res 2019; 26:615-625. [PMID: 30927206 DOI: 10.1007/s12253-019-00646-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers and with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.
Collapse
|
9
|
Prognostic impact of Apaf-1, Cyclin D1, and AQP-5 in serous ovarian carcinoma treated with the first-line chemotherapy. Ann Diagn Pathol 2018; 35:27-37. [DOI: 10.1016/j.anndiagpath.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/10/2018] [Accepted: 02/17/2018] [Indexed: 01/11/2023]
|
10
|
Zhu Z, Jiao L, Li T, Wang H, Wei W, Qian H. Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol Lett 2018; 16:2661-2667. [PMID: 30013662 DOI: 10.3892/ol.2018.8955] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a common type of breast malignancy with high a propensity for metastasis and locoregional recurrence. The aim of the present study was to investigate the expression of aquaporin (AQP) 3 and AQP5, analyze their association with clinicopathological parameters and explore their clinical significance in tissue samples from patients with TNBC. Immunohistochemistry was performed to detect the expression patterns of AQP3 and AQP5 in 96 patients with TNBC who underwent surgery between 2007 and 2012. AQP3 and AQP5 were expressed primarily in the membrane and cytoplasm of tumor cells within TNBC tissues. AQP3 and AQP5 expression was notably stronger in carcinoma tissue compared with adjacent normal tissue. Overexpression of AQP3 and AQP5 was significantly associated with tumor size, lymph node status and local relapse/distant metastasis. In addition, aberrant overexpression of AQP5 was observed more frequently in TNBC tissues with higher Ki-67 expression than in those with lower Ki-67 expression. In univariate analysis, patients with TNBC with high AQP3 and AQP5 expression demonstrated poorer 5-year disease-free survival and overall survival compared with patients with low AQP3 and AQP5 expression. In multivariate analysis, the combined expression of AQP3 and AQP5 was an independent prognostic marker in patients with TNBC. The results of the present study suggest that the overexpression of AQP3 and AQP5 may serve as a novel therapeutic marker in patients with TNBC.
Collapse
Affiliation(s)
- Zhengcai Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Lianghe Jiao
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Tao Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Honggang Wang
- Department of General Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 215300, P.R. China
| | - Wei Wei
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
11
|
Cho HJ, Yun HJ, Yang HC, Kim SJ, Kang SK, Che C, Lee SD, Kang MW. Prognostic significance of nuclear factor of activated T-cells 5 expression in non-small cell lung cancer patients who underwent surgical resection. J Surg Res 2018; 226:40-47. [PMID: 29661287 DOI: 10.1016/j.jss.2017.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/30/2017] [Accepted: 12/28/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Nuclear factor of activated T-cells 5 (NFAT5) is known to be correlated with migration or invasion of tumor cells based on previous in vitro studies. The aim of this study was to analyze the relationship between NFAT5 expression and clinical prognosis in non-small cell lung cancer (NSCLC) patients who underwent surgical resection. MATERIALS AND METHODS A total of 92 NSCLC patients who underwent surgical resection were enrolled. The tissue microarray core was obtained from surgically resected tumor specimens. NFAT5 expression was evaluated by immunohistochemistry. Relationships of NFAT5 expression with disease recurrence, overall survival, and disease-free survival (DFS) were analyzed. RESULTS The mean age of 92 patients was 63.7 y. The median follow-up duration was 63.3 mo. Fifty-one (55%) patients exhibited positive expression of NFAT5. Disease recurrence in the NFAT5-positive group was significantly (P = 0.022) higher than that in the NFAT5-negative group. NFAT5-positive expression (odds ratio: 2.632, 95% confidence interval: 1.071-6.465, P = 0.035) and pathologic N stage (N1-2 versus N0; odds ratio: 3.174, 95% confidence interval: 1.241-8.123, P = 0.016) were independent and significant risk factors for disease recurrence. DFS of the NFAT5-positive group was significantly worse than that of the NFAT5-negative group (89.7 versus 48.7 mo, P = 0.011). A multivariate analysis identified NFAT5 expression (P < 0.029) as a significant independent risk factor for DFS of patients with postoperative pathologic T and N stages (P < 0.001 and P = 0.017, respectively). CONCLUSIONS NFAT5 expression is a useful prognostic biomarker for NSCLC patients who underwent surgical resection.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwan-Jung Yun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hee Chul Yang
- Department of Thoracic and Cardiovascular Surgery, Center for Lung Cancer, Research Institute and Hospital, National Cancer Center, Goyang, South Korea
| | - Soo Jin Kim
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Chengri Che
- Department of Thoracic Surgery, Yanbian University Hospital, Yanji, China
| | - Sang Do Lee
- Department of Physiology, Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Min-Woong Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
12
|
AQP5 promotes hepatocellular carcinoma metastasis via NF-κB-regulated epithelial-mesenchymal transition. Biochem Biophys Res Commun 2017; 490:343-348. [PMID: 28619511 DOI: 10.1016/j.bbrc.2017.06.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Aquaporin 5 (AQP5), a transmembrane protein, is known for its involvement in the progress of many diseases such as chronic kidney disease and systemic disease. Recently, AQP5 has been reported to play an important role in cancer progression. However, little is known about its precise functions in hepatocellular carcinoma (HCC). This study aimed to investigate the specific role of AQP5 in HCC. The results showed that AQP5 was highly expressed in HCC cell lines and its down-regulation inhibited HCC cell invasion and tumor metastasis in vitro and in vivo. In addition, down-regulation of AQP5 suppressed the epithelial-mesenchymal transition (EMT) process in HCC cells by modulating EMT-related molecules such as E-cadherin, α-catenin, N-cadherin and Vimentin. Further studies on corresponding mechanisms indicated that AQP5 down-regulation inhibited HCC metastasis and EMT partly via inactivation of the NF-κB signaling pathway. Taken together, these findings suggest that AQP5 may be a potential therapeutic target for HCC.
Collapse
|
13
|
Direito I, Paulino J, Vigia E, Brito MA, Soveral G. Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J Surg Oncol 2017; 115:980-996. [PMID: 28471475 DOI: 10.1002/jso.24605] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/14/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Aquaporin-5 (AQP5) and -3 (AQP3) are protein channels that showed to be up-regulated in a variety of tumors. Our goal was to investigate the expression pattern of AQP5 and AQP3 in pancreatic ductal adenocarcinomas (PDA) and correlate with cell proliferation, tumor stage and progression, and clinical significance. METHODS 35 PDA samples in different stages of differentiation and locations were analyzed by immunohistochemistry for expression of AQP5, AQP3 and several markers of cell proliferation and tumorigenesis. RESULTS In PDA samples AQP5 was overexpressed in the apical membrane of intercalated and intralobular ductal cells while AQP3 was expressed at the plasma membrane of ductal cells. AQP5 was also found in infiltrative cancer cells in duodenum. Simultaneous overexpression of EGFR, Ki-67, and CK7, with decreased E-cad and increased Vim that characterize epithelial mesenchymal transition, tumor formation and invasion, strongly suggest AQP3 and AQP5 involvement in cell proliferation and transformation. AQP3 overexpression is reinforced in late and more aggressive PDA stages whereas AQP5 is related with tumor differentiation, suggesting it may represent a novel marker for PDA aggressiveness and intestinal infiltration. CONCLUSIONS These findings suggest AQP3 and AQP5 involvement in PDA development and the usefulness of AQP5 in early PDA diagnosis.
Collapse
Affiliation(s)
- Inês Direito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Paulino
- Centro Hepatobiliopancreático e de Transplantação, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Emanuel Vigia
- Centro Hepatobiliopancreático e de Transplantação, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Direito I, Madeira A, Brito MA, Soveral G. Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 2016; 73:1623-40. [PMID: 26837927 PMCID: PMC11108570 DOI: 10.1007/s00018-016-2142-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023]
Abstract
Aquaporins, a highly conserved group of membrane proteins, are involved in the bidirectional transfer of water and small solutes across cell membranes taking part in many biological functions all over the human body. In view of the wide range of cancer malignancies in which aquaporin-5 (AQP5) has been detected, an increasing interest in its implication in carcinogenesis has emerged. Recent publications suggest that this isoform may enhance cancer cell proliferation, migration and survival in a variety of malignancies, with strong evidences pointing to AQP5 as a promising drug target and as a novel biomarker for cancer aggressiveness with high translational potential for therapeutics and diagnostics. This review addresses the structural and functional features of AQP5, detailing its tissue distribution and functions in human body, its expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. Finally, the actual progress of AQP5 research, implications in cancer biology and potential for cancer detection and prognosis are discussed.
Collapse
Affiliation(s)
- Inês Direito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
15
|
Chen X, Zhou C, Yan C, Ma J, Zheng W. Hyperosmotic stress induces cisplatin sensitivity in ovarian cancer cells by stimulating aquaporin-5 expression. Exp Ther Med 2015; 10:2055-2062. [PMID: 26668595 PMCID: PMC4665691 DOI: 10.3892/etm.2015.2833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 09/18/2015] [Indexed: 01/15/2023] Open
Abstract
Aquaporins (AQPs) are important mediators of water permeability and are closely associated with tumor cell proliferation, migration, angiogenesis and chemoresistance. Moreover, the chemosensitivity of tumor cells to cisplatin (CDDP) is potentially affected by osmotic pressure. The present study was undertaken to determine whether hyperosmosis regulates ovarian cancer cell sensitivity to CDDP in vitro and to explore whether this is associated with AQP expression. The hyperosmotic stress was induced by D-sorbitol. 3AO ovarian cancer cells were treated with different concentrations of hypertonic medium and/or CDDP for various times, followed by measuring the inhibition rate of cell proliferation using an MTT assay. In addition, AQP expression in response to osmotic pressure and/or CDDP was measured by reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation in response to hypertonic stress was also measured when AQP5 was knocked down by small interfering (si)RNA. 3AO cell proliferation was inhibited by hyperosmotic stress, while the expression of AQP5, but not that of AQP1, AQP3 or AQP9, was increased in a dose- and time-dependent manner in hypertonic sorbitol-containing medium. When AQP5 was silenced by siRNA, cells were susceptible to hypertonic stress. MTT analyses showed that the inhibition of cell proliferation by a low dose of CDDP increased significantly with exposure to a hyperosmotic stimulus, and this effect was reduced when a high dose of CDDP was used. AQP5 expression was induced by a low dose of CDDP, but was reduced by a high dose of CDDP. However, hyperosmosis enhanced AQP5 mRNA expression at every dose of CDDP tested, compared with isotonic medium. With prolonged treatment time, AQP5 expression was reduced by CDDP in hypertonic and isotonic culture medium. Thus, the effects of hyperosmosis on cell sensitivity to CDDP were associated with AQP5 expression. These results suggest that AQP5 expression in ovarian cancer cells is induced by hypertonic medium, and that the sensitivity of ovarian cancer cells to CDDP can be regulated by hyperosmosis associated with AQP5 expression.
Collapse
Affiliation(s)
- Xuejun Chen
- Department of Gynecology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chunxia Zhou
- Department of Gynecology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Chunxiao Yan
- Department of Gynecology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiong Ma
- Department of Gynecology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Wei Zheng
- Department of Gynecology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
16
|
Wang L, Zhang Y, Wu X, Yu G. Aquaporins: New Targets for Cancer Therapy. Technol Cancer Res Treat 2015; 15:821-828. [PMID: 26438607 DOI: 10.1177/1533034615607693] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
Aquaporins are a family of integral membrane proteins that are expressed in all living organisms and play vital roles in transcellular and transepithelial water movement. Cell viability and motility are critical for progression of cancer. Cell survival requires the suitable concentration of water and solutes. The balance is largely maintained by aquaporins whose major function is the transport of water and small solutes across the plasma membrane. The important role of aquaporins has received more and more attention in the recent years. A number of recent studies have revealed that aquaporins may be involved in cell migration and angiogenesis. This review will highlight the expression of aquaporins in different malignant neoplasms. Remarkably, we will summarize the influence of drugs on aquaporins, not only the traditional Chinese medicine but also the Western medicine. Therapeutic targeting of aquaporins may thus be advantageous for blocking the mechanism common for a number of key cancer phenotypes.
Collapse
Affiliation(s)
- Liping Wang
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| | - Yixiang Zhang
- Respiratory Medicine Department, Second People's Hospital of Weifang, Kuiwen, Weifang, China
| | - Xiongzhi Wu
- Patient Department, Tianjin Medical University Cancer Institute and Hospital, Hexi, Tianjin, China
| | - Guohua Yu
- Clinical Oncology Department, Weifang People's Hospital, Kuiwen, Weifang, China
| |
Collapse
|
17
|
Wang J, Feng L, Zhu Z, Zheng M, Wang D, Chen Z, Sun H. Aquaporins as diagnostic and therapeutic targets in cancer: how far we are? J Transl Med 2015; 13:96. [PMID: 25886458 PMCID: PMC4382841 DOI: 10.1186/s12967-015-0439-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023] Open
Abstract
Aquaporins (AQPs) are a family of water channel proteins distributed in various human tissues, responsible for the transport of small solutes such as glycerol, even gas and ions. The expression of AQPs has been found in more than 20 human cancer types and is significantly correlated with the severity of histological tumors and prognosis of patients with cancer. More recent evidence showed that AQPs could also play a role in tumor-associated edema, tumor cell proliferation and migration, and tumor angiogenesis in solid and hematological tumors. Inhibitors of AQPs in tumor cells and microvessels have been suggested as new therapeutic strategies. The present review overviews AQPs structures, expression variation among normal tissues and tumors, AQPs functions and roles in the development of cancer with special focuses on lung, colorectal, liver, brain and breast cancers, and potential AQPs-target inhibitors. We call the special attention to consider AQPs important as diagnostic and therapeutic biomarkers. It may be a novel anticancer therapy by the AQPs inhibition.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Feng
- Minghang Hospital, Fudan University, Shanghai, China.
| | - Zhitu Zhu
- The First Hospital of Liaoning Medical University, Jingzhou, China.
| | - Minghuan Zheng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Diane Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhihong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongzhi Sun
- The First Hospital of Liaoning Medical University, Jingzhou, China.
| |
Collapse
|
18
|
Tiwari A, Hadley JA, Ramachandran R. Aquaporin 5 expression is altered in ovarian tumors and ascites-derived ovarian tumor cells in the chicken model of ovarian tumor. J Ovarian Res 2014; 7:99. [PMID: 25344048 PMCID: PMC4213468 DOI: 10.1186/s13048-014-0099-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aquaporin 5 (AQP5), a member of the aquaporin family of transmembrane channel proteins, is involved in water transport and cellular proliferation in various tumors. The objective of this study was to determine cellular localization of aquaporin 5 (AQP5) in the ovarian tumors of chicken, a preclinical model for human ovarian tumor and to determine if AQP5 mRNA and protein expression levels in cancerous chicken ovaries and in ascites-derived chicken ovarian cancer (COVCAR) cell lines are different from normal ovaries and normal ovarian surface epithelial (NOSE) cells, respectively. METHODS Immunohistochemical staining was performed to determine the localization of AQP5-immunoreactive (ir) cells in normal and cancerous ovaries. To determine AQP5 mRNA and protein concentrations in cancerous ovaries and COVCAR cell lines, quantitative real time PCR and Western blotting analysis were performed, respectively. Student's t-test was performed to compare the levels of AQP5 mRNA or protein in cancerous ovaries and COVCAR cell lines with that of normal ovaries and NOSE cells, respectively. RESULTS AQP5-ir cells were localized in granulosa and theca layers of normal ovarian follicles whereas cancerous ovaries showed AQP5 immunostaining in the surface epithelium, fibroblast cells of the stroma, and in the cells lining tumor cysts and acini. AQP5 mRNA concentration were significantly lesser while AQP5 protein concentrations were significantly greater in cancerous ovaries compared to that in normal ovaries (P < 0.05). Whereas AQP5 mRNA concentrations were significantly greater while AQP5 protein concentrations were lesser (P < 0.05) in COVCAR cell lines compared with that in NOSE cells. CONCLUSION AQP5 is differentially expressed in ovarian tumor and in COVCAR cell lines suggesting a potential involvement of AQP5 in ovarian tumorigenesis, metastasis, and survival of ovarian tumor cells in ascites.
Collapse
|
19
|
Yan C, Zhu Y, Zhang X, Chen X, Zheng W, Yang J. Down-regulated aquaporin 5 inhibits proliferation and migration of human epithelial ovarian cancer 3AO cells. J Ovarian Res 2014; 7:78. [PMID: 25298246 PMCID: PMC4164796 DOI: 10.1186/s13048-014-0078-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/28/2014] [Indexed: 01/22/2023] Open
Abstract
Background Recent studies suggested that aquaporins 5 (AQP5) was associated with many kinds of cancers and regulated many processes of various kinds of cancer cells. Our previous studies also demonstrated that AQP5 was highly expressed in epithelial ovarian cancer and contributed to the progress of ovarian cancer. Methods Lentivirus for knocking-down the expression of AQP5 was prepared and verified by qPCR and Western blotting. Cell counting kit-8 (CCK8) assay and transwell assay were performed to investigate the role of AQP5 on proliferation and migration of 3AO cells. The effects of down-regulating AQP5 on tumorigenesis were tested by tumor xenografts experiments. Results An effective lentivirus silencing AQP5 expression was obtained and used in this study. Down-regulating AQP5 inhibited proliferation and migration of cultured human epithelial ovarian cancer 3AO Cell. Furthermore, interfering of AQP5 during tumorigenesis could efficiently decrease the tumor growth in athymic mice. Conclusions These findings altogether suggest that AQP5 regulated multi processes in ovarian carcinogenesis and may be an attractive therapeutic target.
Collapse
|
20
|
Shi X, Wu S, Yang Y, Tang L, Wang Y, Dong J, Lü B, Jiang G, Zhao W. AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumour Biol 2014; 35:7035-45. [DOI: 10.1007/s13277-014-1956-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
|
21
|
Xuejun C, Weimin C, Xiaoyan D, Wei Z, Qiong Z, Jianhua Y. Effects of aquaporins on chemosensitivity to cisplatin in ovarian cancer cells. Arch Gynecol Obstet 2014; 290:525-32. [PMID: 24695904 DOI: 10.1007/s00404-014-3216-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 03/14/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION As water transporters, aquaporins (AQPs) are closely related to other membrane transporters, and water permeability in cell may contribute to chemosensitivity of tumor. To understand the correlation between AQPs and cisplatin (DDP) sensitivity to ovarian cancer cells, effects of DDP on AQPs expression were detected in vitro, and chemosensitivity of DDP was observed in hypertoncity in vitro. METHODS SKOV3 cells were incubated with DDP, aquaporins blocker mercuric chloride, or in hypertonicity, and cell proliferation inbihition was measured by MTT. Effects of DDP on AQPs mRNA expression cancer cell SKOV3 were measured by RT-PCR. RESULTS MTT analyses showed that aquaporin blocker and hypertonicity increased the sensitivity of SKOV3 to DDP. The effects of DDP on AQPs expression were different between aquaporin subtypes: following an increase in the incubation time, the expression of AQP1 mRNA decreased significantly, but expression of AQP3 and AQP8 increased. CONCLUSION Our studies have showed that different subtypes of AQPs play different roles in ovarian cancer cell in vitro, and which suggested that AQPs might be associated with chemotherapy sensitivity of ovarian cancer.
Collapse
Affiliation(s)
- Chen Xuejun
- Department of Gynecology, Second Affiliated Hospital, Zhejiang University College of Medicine, 88 Jiefang Road, Hangzhou, 310006, Zhejiang, China,
| | | | | | | | | | | |
Collapse
|
22
|
Zheng X, Zhu S, Chang S, Cao Y, Dong J, Li J, Long R, Zhou Y. Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: Role of NF-kappa B signaling. Eur J Pharmacol 2013; 720:S0014-2999(13)00793-0. [PMID: 24513509 DOI: 10.1016/j.ejphar.2013.10.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 12/01/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an increased risk of macrovascular disease. Epidemiological studies suggest that plant polyphenol resveratrol (REV) is associated with reduced risk of cardiovascular diseases. Since chronic inflammatory and endothelial cell activation play a critical role in vascular aging and atherogenesis, we evaluated whether REV can inhibit inflammatory-induced vascular injury in T2DM. We found that REV (50mg/kg/d) can regulate glucose and lipid metabolism, improve insulin resistance and vascular permeability, and protect against the foam cells and cholesterol crystals formation in arterial vessel walls of T2DM rats. The protective effects of REV were consistent with the decrease in nuclear translocation of nuclear factor kappa B (NF-kappa B) and the downregulation of interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) levers in blood and tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) expressions in vascular wall. In addition, REV (10 and 100nmol/L) treatment protected cultured endothelial cells against increases in the expression of TNF-α, ICAM-1, and MCP-1 mRNA and protein induced by high glucose via inhibiting nuclear translocation of NF-kappa B p65. The specific NF-kappa B inhibitor pyrrolidine dithiocarbamate- (PDTC-) or small interfering RNA directed against NF-kappa B p65-mediated downregulation of NF-kappa B p65 was further enhanced by REV (100nmol/L) in the human endothelial cell line EA. hy926. In conclusion, these observations suggest that chronic treatment of T2DM rats with REV attenuates the inflammatory injury of the vascular wall and the effects are associated with down-regulation of the NF-kappa B signal pathway.
Collapse
Affiliation(s)
- Xiaoying Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yanni Cao
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Dong
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juan Li
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuanda Zhou
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
23
|
Lee SJ, Chae YS, Kim JG, Kim WW, Jung JH, Park HY, Jeong JY, Park JY, Jung HJ, Kwon TH. AQP5 Expression Predicts Survival in Patients with Early Breast Cancer. Ann Surg Oncol 2013; 21:375-83. [DOI: 10.1245/s10434-013-3317-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Indexed: 11/18/2022]
|
24
|
Ribatti D, Ranieri G, Annese T, Nico B. Aquaporins in cancer. Biochim Biophys Acta Gen Subj 2013; 1840:1550-3. [PMID: 24064112 DOI: 10.1016/j.bbagen.2013.09.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The aquaporins (AQPs) are a family of 13 small hydrophobic integral transmembrane water channel proteins involved in transcellular and transepithelial water movement, transport of fluid and cell migration. SCOPE OF THE REVIEW This review article summarizes our knowledge concerning the involvement of AQPs in tumor growth, angiogenesis and metastatic process. MAJOR CONCLUSIONS Tumor cells types express AQPs and a positive correlation exists between histological tumor grade and the AQP expression. Moreover, AQPs are involved also in tumor edema formation and angiogenesis in several solid and hematological tumors. GENERAL SIGNIFICANCE AQPs inhibition in endothelial and tumor cells might limit tumor growth and spread, suggesting a potential therapeutic use in the treatment of tumors. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute "Giovanni Paolo II," Bari, Italy.
| | | | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
25
|
Frede J, Fraser SP, Oskay-Özcelik G, Hong Y, Ioana Braicu E, Sehouli J, Gabra H, Djamgoz MB. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential. Eur J Cancer 2013; 49:2331-44. [DOI: 10.1016/j.ejca.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/29/2013] [Accepted: 03/10/2013] [Indexed: 01/11/2023]
|
26
|
Aquaporins in drug discovery and pharmacotherapy. Mol Aspects Med 2012; 33:691-703. [DOI: 10.1016/j.mam.2012.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/13/2012] [Accepted: 01/15/2012] [Indexed: 11/18/2022]
|