1
|
Ye L, Dimitriadis E. Endometrial Receptivity-Lessons from "Omics". Biomolecules 2025; 15:106. [PMID: 39858500 PMCID: PMC11764156 DOI: 10.3390/biom15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The window of implantation (WOI) is a critical phase of the menstrual cycle during which the endometrial lining becomes receptive and facilitates embryo implantation. Drawing on findings from various branches of "omics", including genomics, epigenomics, transcriptomics, proteomics, lipidomics, metabolomics, and microbiomics, this narrative review aims to (1) discuss mechanistic insights on endometrial receptivity and its implication in infertility; (2) highlight advances in investigations for endometrial receptivity; and (3) discuss novel diagnostic and therapeutic strategies that may improve reproductive outcomes.
Collapse
Affiliation(s)
- Louie Ye
- Reproductive Service Unit, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
2
|
Hu J, Chen L, Ruan J, Chen X. The role of the annexin A protein family at the maternal-fetal interface. Front Endocrinol (Lausanne) 2024; 15:1314214. [PMID: 38495790 PMCID: PMC10940358 DOI: 10.3389/fendo.2024.1314214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Successful pregnancy requires the tolerance of the maternal immune system for the semi-allogeneic embryo, as well as a synchrony between the receptive endometrium and the competent embryo. The annexin family belongs to calcium-regulated phospholipid-binding protein, which functions as a membrane skeleton to stabilize the lipid bilayer and participate in various biological processes in humans. There is an abundance of the annexin family at the maternal-fetal interface, and it exerts a crucial role in embryo implantation and the subsequent development of the placenta. Altered expression of the annexin family and dysfunction of annexin proteins or polymorphisms of the ANXA gene are involved in a range of pregnancy complications. In this review, we summarize the current knowledge of the annexin A protein family at the maternal-fetal interface and its association with female reproductive disorders, suggesting the use of ANXA as the potential therapeutic target in the clinical diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Jingwen Hu
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Lin Chen
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing Ruan
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Herrera L, Martin-Inaraja M, Bengoetxea A, Vendrell A, Pérez-Fernández S, Eguizabal C, Matorras R. Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters. J Assist Reprod Genet 2023; 40:2241-2250. [PMID: 37436645 PMCID: PMC10440323 DOI: 10.1007/s10815-023-02862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
PURPOSE To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters. METHODS The population under study consisted of 43 women aged 18-40 undergoing infertility workup at our University Hospital in 2021-2022. The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27-29 days. An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood. RESULTS Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4-5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood. CONCLUSION We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Myriam Martin-Inaraja
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Ainara Bengoetxea
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Alberto Vendrell
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Silvia Pérez-Fernández
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, 48960, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, 48903, Barakaldo, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Department of Obstetrics and Gynecology, Cruces University Hospital, Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
- Department of Medical-Surgical Specialties, Basque Country University, Lejona, Spain
- Instituto Valenciano de Infertilidad - IVI Bilbao, IVIRMA, Lejona, Spain
| |
Collapse
|
4
|
Kanaka V, Drakakis P, Loutradis D, Tsangaris GT. Proteomics in the study of female fertility: an update. Expert Rev Proteomics 2023; 20:319-330. [PMID: 37874610 DOI: 10.1080/14789450.2023.2275683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
5
|
Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol 2022; 10:1078096. [PMID: 36619864 PMCID: PMC9813391 DOI: 10.3389/fcell.2022.1078096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.
Collapse
Affiliation(s)
- Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University (LTU), Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia
| | - Lois A. Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia,*Correspondence: David W. Greening,
| |
Collapse
|
6
|
Ibañez-Perez J, Díaz-Nuñez M, Clos-García M, Lainz L, Iglesias M, Díez-Zapirain M, Rabanal A, Bárcena L, González M, Lozano JJ, Marigorta UM, González E, Royo F, Aransay AM, Subiran N, Matorras R, Falcón-Pérez JM. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium. Hum Reprod 2022; 37:2375-2391. [PMID: 36029522 PMCID: PMC9527456 DOI: 10.1093/humrep/deac184] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/02/2022] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Is it possible to use free and extracellular vesicle-associated microRNAs (miRNAs) from human endometrial fluid (EF) samples as non-invasive biomarkers for implantative endometrium? SUMMARY ANSWER The free and extracellular vesicle-associated miRNAs can be used to detect implantative endometrium in a non-invasive manner. WHAT IS KNOWN ALREADY miRNAs and extracellular vesicles (EVs) from EF have been described as mediators of the embryo–endometrium crosstalk. Therefore, the analysis of miRNA from this fluid could become a non-invasive technique for recognizing implantative endometrium. This analysis could potentially help improve the implantation rates in ART. STUDY DESIGN, SIZE, DURATION In this prospective study, we first optimized different protocols for EVs and miRNA analyses using the EF of a setup cohort (n = 72). Then, we examined differentially expressed miRNAs in the EF of women with successful embryo implantation (discovery cohort n = 15/validation cohort n = 30) in comparison with those for whom the implantation had failed (discovery cohort n = 15/validation cohort n = 30). Successful embryo implantation was considered when pregnancy was confirmed by vaginal ultrasound showing a gestational sac 4 weeks after embryo transfer (ET). PARTICIPANTS/MATERIALS, SETTING, METHODS The EF of the setup cohort was obtained before starting fertility treatment during the natural cycle, 16–21 days after the beginning of menstruation. For the discovery and validation cohorts, the EF was collected from women undergoing frozen ET on Day 5, and the samples were collected immediately before ET. In this study, we compared five different methods; two of them based on direct extraction of RNA and the other three with an EV enrichment step before the RNA extraction. Small RNA sequencing was performed to determine the most efficient method and find a predictive model differentiating between implantative and non-implantative endometrium. The models were confirmed using quantitative PCR in two sets of samples (discovery and validation cohorts) with different implantation outcomes. MAIN RESULTS AND THE ROLE OF CHANCE The protocols using EV enrichment detected more miRNAs than the methods based on direct RNA extraction. The two most efficient protocols (using polymer-based precipitation (PBP): PBP-M and PBP-N) were used to obtain two predictive models (based on three miRNAs) allowing us to distinguish between an implantative and non-implantative endometrium. The first Model 1 (PBP-M) (discovery: AUC = 0.93; P-value = 0.003; validation: AUC = 0.69; P-value = 0.019) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-148b-3p. Model 2 (PBP-N) (discovery: AUC = 0.92; P-value = 0.0002; validation: AUC = 0.78; P-value = 0.0002) used hsa-miR-200b-3p, hsa-miR-24-3p and hsa-miR-99b-5p. Functional analysis of these miRNAs showed strong association with key implantation processes such as in utero embryonic development or transforming growth factor-beta signaling. LARGE SCALE DATA The FASTQ data are available in the GEO database (access number GSE178917). LIMITATIONS, REASONS FOR CAUTION One important factor to consider is the inherent variability among the women involved in the trial and among the transferred embryos. The embryos were pre-selected based on morphology, but neither genetic nor molecular studies were conducted, which would have improved the accuracy of our tests. In addition, a limitation in miRNA library construction is the low amount of input RNA. WIDER IMPLICATIONS OF THE FINDINGS We describe new non-invasive protocols to analyze miRNAs from small volumes of EF. These protocols could be implemented in clinical practice to assess the status of the endometrium before attempting ET. Such evaluation could help to avoid the loss of embryos transferred to a non-implantative endometrium. STUDY FUNDING/COMPETING INTEREST(S) J.I.-P. was supported by a predoctoral grant from the Basque Government (PRE_2017_0204). This study was partially funded by the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany). It was also supported by the Spanish Ministry of Economy and Competitiveness MINECO within the National Plan RTI2018-094969-B-I00, the European Union's Horizon 2020 research and innovation program (860303), the Severo Ochoa Centre of Excellence Innovative Research Grant (SEV-2016-0644) and the Instituto de Salud Carlos III (PI20/01131). The funding entities did not play any role in the study design, collection, analysis and interpretation of data, writing of the report or the decision to submit the article for publication. The authors declare no competing interests.
Collapse
Affiliation(s)
- Jone Ibañez-Perez
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Obstetrics and Gynecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain
| | - María Díaz-Nuñez
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Marc Clos-García
- Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucía Lainz
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - María Iglesias
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Miren Díez-Zapirain
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Aintzane Rabanal
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Laura Bárcena
- Genome Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain
| | | | - Juan J Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Urko M Marigorta
- Integrative Genomics Lab, CIC bioGUNE-BRTA, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Félix Royo
- Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE-BRTA, Derio, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Nerea Subiran
- Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Spain.,Innovation in Assisted Reproduction Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.,Department of Obstetrics and Gynecology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Instituto Valenciano de Infertilidad (IVI) Bilbao/IVIRMA, Leioa, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, CIC bioGUNE-BRTA, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain.,Metabolomics Platform, CIC bioGUNE-BRTA, Derio, Spain
| |
Collapse
|
7
|
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J 2022; 13:237-260. [PMID: 35719135 PMCID: PMC9203609 DOI: 10.1007/s13167-022-00282-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/05/2022] [Indexed: 10/28/2022]
Abstract
The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.
Collapse
Affiliation(s)
- Vasiliki Kanaka
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Stavros Proikakis
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Dimitrios Loutradis
- First Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
8
|
Matorras R, Navarro A, Ramos D, Malaina I, Irazusta J, Vendrell A, Fernandez A, Ferrando M, Quintana F. Physical activity and sperm quality: influence in sperm donors. Reprod Biol Endocrinol 2022; 20:83. [PMID: 35610619 PMCID: PMC9128101 DOI: 10.1186/s12958-022-00946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To ascertain whether physical activity (PA) is associated with better sperm quality in sperm donors. METHODS A prospective case-control study was designed in an IVF center setting. A total of 207 sperm donation candidates from a relatively small geographical area were included in the study with no intervention. Donor candidates were subjected to conventional sperm analysis according to WHO criteria. Moreover, they answered a standardized questionnaire regarding their last week PA (IPAQ), with PA expressed in metabolic equivalents (METs)-min/week. Donors were classified into 4 groups: low, moderate, high and very high PA. Specific sports were included in the questionnaire. Semen samples from 43 accepted donors were used in artificial insemination by donor (AID) and IVF. The fertilization rates (FR) and pregnancy rates (PR) were studied. RESULTS Semen volume, sperm concentration, progressive spermatozoa, non-progressive spermatozoa, total motile progressive spermatozoa and sperm morphology were similar in the four PA groups. No correlation between various semen parameters studied and METs was found. Running or cycling > 1 h/week did not influence sperm parameters. The AID PR was similar in the different PA groups. However, in IVF the mean donor FR was significantly higher in the high PA group and in the very high PA group. CONCLUSIONS No detrimental effect was associated with PA, or even very high PA, regarding conventional sperm parameters. Moreover, a better FR was associated with high and very high PA in IVF cycles, which merits more studies.
Collapse
Affiliation(s)
- Roberto Matorras
- IVIRMA BILBAO, Lejona, Spain
- Obstetrics and Gynecology Department, Department of Medical-Surgical Specialties, Cruces University Hospital, Basque Country University, Baracaldo, Spain
- Biocruces Health Research Institute, Baracaldo, Spain
| | | | | | - Iker Malaina
- Department of Mathematics, Basque Country University, Lejona, Spain
| | - Jon Irazusta
- Department of Physiology, Basque Country University, Lejona, Spain
| | | | | | | | | |
Collapse
|
9
|
Hou Z, He A, Zhang Q, Liu N, Liu D, Li Y, Xu B, Wang Y, Li S, Tian F, Liao T, Zhang Y, Cao J, Cao E, Li Y. Endometrial fluid aspiration immediately prior to embryo transfer does not affect IVF/vitrified-warmed embryo transfer outcomes - a prospective matched cohort study. Reprod Biomed Online 2022; 44:486-493. [PMID: 35177340 DOI: 10.1016/j.rbmo.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Does the endometrial aspiration of ultrasound-invisible fluid immediately preceding embryo transfer affect IVF/vitrified-warmed embryo transfer outcomes? DESIGN A prospective matched cohort study was conducted in 96 women and 96 control participants to assess the effect on pregnancy outcomes of endometrial aspiration performed immediately before embryo transfer. This study was carried out at a university-affiliated assisted reproductive medical centre between January 2019 and December 2019. Patients were divided into two groups. The EA group had cycles with endometrial aspiration of ultrasound-invisible fluid performed before embryo transfer and the non-EA group featured cycles without endometrial aspiration. The EA group was matched by propensity score with the non-EA group in a 1:1 ratio. The EA group consisted of 99 participants before and 96 participants after propensity score matching. There were 203 and 96 participants in the non-EA group before and after propensity score matching. RESULTS No significant differences were detected in the baseline characteristics and cycle characteristics of the EA and non-EA groups. No significant between-group differences were found in reproductive outcomes in the overall population. Subgroup analysis of blastocyst transfer cycles showed the implantation rate was significantly higher in the EA group (61 women per group, 57.1% versus 40.8%, relative risk 1.40, 95% confidence interval 1.04-1.88; P = 0.022). Live birth rate, clinical pregnancy rate, ongoing pregnancy rate and multiple pregnancy rate were not different among the groups. CONCLUSIONS Endometrial aspiration immediately preceding embryo transfer does not affect IVF/vitrified-warmed embryo transfer outcomes. Interestingly, it might improve the vitrified-warmed blastocyst implantation rate. Randomized controlled trials are needed to confirm this result.
Collapse
Affiliation(s)
- Zhaojuan Hou
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Aihua He
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Nenghui Liu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Donge Liu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Yumei Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Bin Xu
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Yonggang Wang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Shuyi Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Fen Tian
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Tingting Liao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Yeqing Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Jianyun Cao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Exiang Cao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha City Hunan Province, P.R. China; Clinical Research Center For Women's Reproductive Health In Hunan Province, Changsha City Hunan Province, P.R. China.
| |
Collapse
|
10
|
Wang B, Shao Y. Annexin A2 acts as an adherent molecule under the regulation of steroids during embryo implantation. Mol Hum Reprod 2021; 26:825-836. [PMID: 33010173 DOI: 10.1093/molehr/gaaa065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
We previously showed that annexin A2 (Axna2) was transiently expressed at the embryo-uterine luminal epithelium interface during the window of implantation and was involved in mouse embryo implantation. At the same time, Axna2 was reported to be upregulated in human receptive endometrium, which was critical for embryo attachment as an intracellular molecule. Here, we identified Axna2 as a membrane-bound molecule on human endometrial epithelial cells and trophoblast cells, and the outer surface membrane-bound Axna2 was involved in human embryo attachment. In addition, physiological levels of estrogen and progesterone increased the expression of overall Axna2 as well as that in the extracellular surface membrane protein fraction in human endometrial cells. Furthermore, p11 (or S100A10, a member of the S100 EF-hand family protein, molecular weight 11 kDa) was involved in the translocation of Axna2 to the outer surface membrane of endometrial epithelial cells without affecting its overall expression. Finally, the surface relocation of Axna2 was also dependent on cell-cell contact and calcium binding. A better understanding of the function and regulation of Axna2 in human endometrium may help us to identify a potential therapeutic target for subfertile and infertile patients.
Collapse
Affiliation(s)
- Bing Wang
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, People's Republic of China
- R & D Department, Shenzhen Wingor Biotechnology Co., Ltd, Room 304, Shenzhen IC Design & Application Industrial Park, Shenzhen City, Guangdong Province, People's Republic of China
| | - Yan Shao
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Shatin, NT, People's Republic of China
| |
Collapse
|
11
|
Molecular Characterisation of Uterine Endometrial Proteins during Early Stages of Pregnancy in Pigs by MALDI TOF/TOF. Int J Mol Sci 2021; 22:ijms22136720. [PMID: 34201586 PMCID: PMC8267828 DOI: 10.3390/ijms22136720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular mechanism underlying embryonic implantation is vital to understand the correct communications between endometrium and developing conceptus during early stages of pregnancy. This study’s objective was to determine molecular changes in the uterine endometrial proteome during the preimplantation and peri-implantation between 9 days (9D), 12 days (12D), and 16 days (16D) of pregnant Polish Large White (PLW) gilts. 2DE-MALDI-TOF/TOF and ClueGOTM approaches were employed to analyse the biological networks and molecular changes in porcine endometrial proteome during maternal recognition of pregnancy. A total of sixteen differentially expressed proteins (DEPs) were identified using 2-DE gels and MALDI-TOF/TOF mass spectrometry. Comparison between 9D and 12D of pregnancy identified APOA1, CAPZB, LDHB, CCT5, ANXA4, CFB, TTR upregulated DEPs, and ANXA5, SMS downregulated DEPs. Comparison between 9D and 16D of pregnancy identified HP, APOA1, ACTB, CCT5, ANXA4, CFB upregulated DEPs and ANXA5, SMS, LDHB, ACTR3, HP, ENO3, OAT downregulated DEPs. However, a comparison between 12D and 16D of pregnancy identified HP, ACTB upregulated DEPs, and CRYM, ANXA4, ANXA5, CAPZB, LDHB, ACTR3, CCT5, ENO3, OAT, TTR down-regulated DEPs. Outcomes of this study revealed key proteins and their interactions with metabolic pathways involved in the recognition and establishment of early pregnancy in PLW gilts.
Collapse
|
12
|
Antibacterial and Antifungal Activity of the Human Endometrial Fluid during the Natural Cycle. Infect Dis Obstet Gynecol 2021; 2021:8849664. [PMID: 34220191 PMCID: PMC8221874 DOI: 10.1155/2021/8849664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/26/2021] [Accepted: 06/02/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Some microbiota patterns have been associated with favorable IVF prognosis and others with pathological conditions. The endometrial fluid aspirate (EFA) contains antibacterial proteins that are enriched in implantative IVF cycles, but the antimicrobial effect of EFA has not been addressed. We aimed to evaluate the antimicrobial activity of the human endometrial fluid during the natural cycle. Methods EFA was obtained through an embryo transfer catheter in 38 women, aged 18-40 years, with regular cycles attending to a fertility clinic. The antimicrobial activity of EFAs was tested against two strains of Staphylococcus aureus; one strain each of Streptococcus agalactiae, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae; and three yeasts (Candida albicans, Candida glabrata, and Candida krusei). Results All samples exhibited antibacterial activity against S. aureus. In addition, 32.4% of EFAs were active against one of the other microorganisms assayed, 16.2% against two, and 5.4% against four of them. In contrast, none exhibited antibacterial activity against E. coli or K. pneumoniae. The antimicrobial activity differs considerably between EFA samples, and we failed to observe a cycle-related pattern. Conclusions EFA presented two antimicrobial activity patterns: (a) one common to all the samples, exhibiting activity against S. aureus and lack of activity against E. coli and K. pneumoniae, and (b) an individualized pattern, showing activity against some of the other microorganisms tested. The intensity of antibacterial activity differs between EFA samples. Our data suggest that the uterine microbiota is controlled by means of endometrial fluid components.
Collapse
|
13
|
Matorras R, Valls R, Azkargorta M, Burgos J, Rabanal A, Elortza F, Mas JM, Sardon T. Proteomics based drug repositioning applied to improve in vitro fertilization implantation: an artificial intelligence model. Syst Biol Reprod Med 2021; 67:281-297. [PMID: 34126818 DOI: 10.1080/19396368.2021.1928792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Embryo implantation is one of the most inefficient steps in assisted reproduction, so the identifying drugs with a potential clinical application to improve it has a strong interest. This work applies artificial intelligence and systems biology-based mathematical modeling strategies to unveil potential treatments by computationally analyzing and integrating available molecular and clinical data from patients. The mathematical models of embryo implantation computationally generated here simulate the molecular networks underneath this biological process. Once generated, these models were analyzed in order to identify potential repositioned drugs (drugs already used for other indications) able to improve embryo implantation by modulating the molecular pathways involved. Interestingly, the repositioning analysis has identified drugs considering two endpoints: (1) drugs able to modulate the activity of proteins whose role in embryo implantation is already bibliographically acknowledged, and (2) drugs that modulate key proteins in embryo implantation previously predicted through a mechanistic analysis of the mathematical models. This second approach increases the scope open for examination and potential novelty of the repositioning strategy. As a result, a list of 23 drug candidates to improve embryo implantation after IVF was identified by the mathematical models. This list includes many of the compounds already tested for this purpose, which reinforces the predictive capacity of our approach, together with novel repositioned candidates (e.g., Infliximab, Polaprezinc, and Amrinone). In conclusion, the present study exploits existing molecular and clinical information to offer new hypotheses regarding molecular mechanisms in embryo implantation and therapeutic candidates to improve it. This information will be very useful to guide future research.Abbreviations: IVF: in vitro fertilization; EI: Embryo implantation; TPMS: Therapeutic Performance Mapping System; MM: mathematical models; ANN: Artificial Neuronal Networks; TNFα: tumour necrosis factor factor-alpha; HSPs: heat shock proteins; VEGF: vascular endothelial growth factor; PPARA: peroxisome proliferator activated receptor-α PXR: pregnane X receptor; TTR: transthyretin; BED: Biological Effectors Database; MLP: multilayer perceptron.
Collapse
Affiliation(s)
- Roberto Matorras
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain.,IVIRMA Bilbao, Bilbao, Spain
| | | | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Jorge Burgos
- Biocruces Bizkaia Health Research Institute. Osakidetza. Cruces University Hospital, University of the Basque Country, Bilbao, Spain
| | - Aintzane Rabanal
- Department of Obstetrics and Gynecology, University of the Basque Country, Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | | | | |
Collapse
|
14
|
Goto K, Kawano Y, Utsunomiya T, Narahara H. The Possibility of Analyzing Endometrial Receptivity Using Cells from Embryo Transfer Catheters. Reprod Sci 2021; 28:2623-2629. [PMID: 34085206 DOI: 10.1007/s43032-021-00645-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/27/2021] [Indexed: 11/25/2022]
Abstract
It is very important to investigate the expression of endometrial receptive markers in the endometrium during implantation. Therefore, we examined whether it would be possible to analyze endometrial receptivity using cells from embryo transfer catheters. A total of 81 cycles from 81 consenting patients were enrolled in this study. The tip of the embryo transfer (ET) catheter was cut and immersed in a dedicated reagent. Confirmation of cell distribution was carried out using a Papanicolaou stain and immunocytochemistry. Protein expression was carried out by immunocytochemistry. The expressions of estrogen receptor α, progesterone receptor, and homeobox A10 mRNA were analyzed using quantitative reverse transcription-polymerase chain reaction. We analyzed the relationship between the gene expression profiles associated with pregnancy from endometrial cells. Samples collected from the ET catheter showed clear staining for endometrial cells. Most of the cells were endometrial epithelial cells. Cervical cells were not observed. The protein expression was also confirmed. Three genes were analyzed that are associated with endometrial receptivity. Progesterone receptor expression was 1.4-fold (p<0.05) and homeobox A10 was 2.8-fold (p<0.01) higher in patients who became non-pregnant group, compared to the pregnant group. Estrogen receptor α expression tended to be higher in the non-pregnant group (p=0.18). Our results suggest that endometrial receptivity can be evaluated using cells obtained from the ET catheter. This method may be useful for elucidating the cause of implantation failure by comparing a receptive and non-receptive endometrium at the time of ET.
Collapse
Affiliation(s)
- Kaori Goto
- St. Luke Clinic, Oita, Japan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan.
| | | | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
15
|
Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, Salamonsen LA, Greening DW. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics 2021; 21:e2000211. [PMID: 33634576 DOI: 10.1002/pmic.202000211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.
Collapse
Affiliation(s)
- Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Monique Fatmous
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Shanti Gurung
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,Monash IVF, Clayton, Victoria, Australia.,Women's and Newborn Program, Monash Health, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Gerber RS, Buyuk E, Zapantis G, Lieman H, Meier UT. Presence of endometrial nucleolar channel systems at the time of frozen embryo transfer in hormone replacement cycles with successful implantation. F&S SCIENCE 2021; 2:80-87. [PMID: 35156063 PMCID: PMC8829816 DOI: 10.1016/j.xfss.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To detect nucleolar channel systems (NCSs) in cells in endometrial aspirations obtained immediately before embryo transfer during blastocyst hormone replacement therapy-frozen embryo transfer (HRT-FET) cycles without affecting implantation. DESIGN Prospective case series. SETTING University-affiliated fertility clinic. PATIENTS Five patients who underwent an HRT-FET cycle consented to lower uterine segment aspiration using an open-tip embryo transfer catheter during a routine mock transfer performed immediately before embryo transfer. INTERVENTIONS Exfoliated cells in the aspirated endometrial secretions were analyzed for the presence of NCSs using indirect immunofluorescence and, in one case, electron microscopy for unambiguous identification. MAIN OUTCOME MEASURES On the basis of a previous study, positive NCS status was defined as the presence of NCSs in at least 3 endometrial epithelial cells (EECs). The effect of endometrial aspiration on implantation and pregnancy outcomes was assessed. RESULTS Biochemical pregnancy, as evidenced by positive β-human chorionic gonadotropin, was seen in 5 of 5 patients, and clinical pregnancy was seen in 2 of 5 patients. NCSs were detected in exfoliated EECs of uterine secretions in 4 of 5 patient samples and could not be unequivocally identified in 1 of 5 patient samples, which was designated as indeterminate. CONCLUSIONS This is the first report of NCS detection in HRT-FET cycles in the absence of follicular development and ovulation. NCS status can be determined in exfoliated EECs of uterine secretions obtained at the time of embryo transfer while maintaining implantation. Our study furthers the goal of establishing whether individualized point of care testing of NCS status in HRT-FET cycles can determine optimal endometrial receptivity and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Rachel S. Gerber
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
- Department of Obstetrics & Gynecology and Women’s Health, Institute for Reproductive Medicine and Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Erkan Buyuk
- Department of Obstetrics & Gynecology and Women’s Health, Institute for Reproductive Medicine and Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Obstetrics, Gynecology and Reproductive Science, Reproductive Medicine Associates of New York, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Harry Lieman
- Department of Obstetrics & Gynecology and Women’s Health, Institute for Reproductive Medicine and Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - U. Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
17
|
Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril 2020; 115:1327-1336. [PMID: 33272614 DOI: 10.1016/j.fertnstert.2020.10.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To optimize a method of isolating extracellular vesicles (EVs) from uterine fluid and to characterize small non-coding RNAs (sncRNAs) from the EVs, with the goal of identifying novel receptivity-associated biomarkers. DESIGN Longitudinal study comparing sncRNA expression profiles from endometrial EVs. SETTING University-affiliated, hospital-based fertility clinic. PATIENT(S) Healthy volunteers with no history of infertility (Group A) and women receiving controlled ovarian stimulation (COS)-in vitro fertilization treatment (Group B). INTERVENTIONS(S) In Group A, EVs were isolated from uterine fluid obtained on luteinizing hormone (LH)+2 and LH+7 in one natural menstrual cycle. In Group B, EVs were isolated from uterine fluid obtained on human chorionic gonadotropin (hCG)+2 and hCG+7 in one COS cycle. RNAs extracted from EVs were profiled using next-generation sequencing. MAIN OUTCOME MEASURE(S) Differential EV-sncRNAs between LH+2 and LH+7 (Group A), between hCG+2 and hCG+7 (Group B), and between pregnant and nonpregnant in vitro fertilization cycles (Group B). RESULT(S) Ultracentrifugation was validated as the most efficient method to isolate EVs from uterine fluid. We identified 12 endometrial EV-sncRNAs (11 microRNAs and 1 piwi-interacting RNA) as receptivity-associated transcripts conserved in both natural and COS cycles. These sncRNAs were associated strongly with biological functions related to immune response, extracellular matrix, and cell junction. Within COS cycles, we also identified a group of EV-sncRNAs that exhibited differential expression in patients who conceived versus those who did not, with hsa-miR-362-3p most robustly overexpressed in the nonpregnant patients. CONCLUSION(S) This study is the first to profile comprehensively sncRNAs in endometrial EVs from uterine fluid and identify sncRNA biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Tiantian Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ellen M Greenblatt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Mount Sinai Fertility, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | | | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Chan
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Mount Sinai Fertility, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update 2020; 26:264-301. [PMID: 32096829 DOI: 10.1093/humupd/dmz042] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryo implantation is a complex process that requires the coordination of a series of events, involving both the embryo and the maternal endometrium. Key to this process is the intricate cascade of molecular mechanisms regulated by endocrine, paracrine and autocrine modulators of embryonic and maternal origin. Despite significant progress in ART, implantation failure still affects numerous infertile couples worldwide and fewer than 10% of embryos successfully implant. Improved selection of both the viable embryos and the optimal endometrial phenotype for transfer remains crucial to enhancing implantation chances. However, both classical morphological embryo selection and new strategies incorporated into clinical practice, such as embryonic genetic analysis, morphokinetics or ultrasound endometrial dating, remain insufficient to predict successful implantation. Additionally, no techniques are widely applied to analyse molecular signals involved in the embryo-uterine interaction. More reliable biological markers to predict embryo and uterine reproductive competence are needed to improve pregnancy outcomes. Recent years have seen a trend towards 'omics' methods, which enable the assessment of complete endometrial and embryonic molecular profiles during implantation. Omics have advanced our knowledge of the implantation process, identifying potential but rarely implemented biomarkers of successful implantation. OBJECTIVE AND RATIONALE Differences between the findings of published omics studies, and perhaps because embryonic and endometrial molecular signatures were often not investigated jointly, have prevented firm conclusions being reached. A timely review summarizing omics studies on the molecular determinants of human implantation in both the embryo and the endometrium will help facilitate integrative and reliable omics approaches to enhance ART outcomes. SEARCH METHODS In order to provide a comprehensive review of the literature published up to September 2019, Medline databases were searched using keywords pertaining to omics, including 'transcriptome', 'proteome', 'secretome', 'metabolome' and 'expression profiles', combined with terms related to implantation, such as 'endometrial receptivity', 'embryo viability' and 'embryo implantation'. No language restrictions were imposed. References from articles were also used for additional literature. OUTCOMES Here we provide a complete summary of the major achievements in human implantation research supplied by omics approaches, highlighting their potential to improve reproductive outcomes while fully elucidating the implantation mechanism. The review highlights the existence of discrepancies among the postulated biomarkers from studies on embryo viability or endometrial receptivity, even using the same omic analysis. WIDER IMPLICATIONS Despite the huge amount of biomarker information provided by omics, we still do not have enough evidence to link data from all omics with an implantation outcome. However, in the foreseeable future, application of minimally or non-invasive omics tools, together with a more integrative interpretation of uniformly collected data, will help to overcome the difficulties for clinical implementation of omics tools. Omics assays of the embryo and endometrium are being proposed or already being used as diagnostic tools for personalised single-embryo transfer in the most favourable endometrial environment, avoiding the risk of multiple pregnancies and ensuring better pregnancy rates.
Collapse
Affiliation(s)
- Purificación Hernández-Vargas
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Manuel Muñoz
- IVI-RMA Alicante, Innovation. Avda. de Denia 111, 03015 Alicante, Spain.,Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| | - Francisco Domínguez
- Fundación IVI, Innovation-IIS La Fe, Avda. Fernando Abril Martorell 106, Torre A, 1° 1.23, 46026 Valencia, Spain
| |
Collapse
|
19
|
Guo X, Li TC, Chen X. The endometrial proteomic profile around the time of embryo implantation†. Biol Reprod 2020; 104:11-26. [PMID: 32856701 DOI: 10.1093/biolre/ioaa150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/30/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023] Open
Abstract
Embryo implantation is an intricate process which requires competent embryo and receptive endometrium. The failure of endometrium to achieve receptivity is a recognized cause of infertility. However, due to multiplicity of events involved, the molecular mechanisms governing endometrial receptivity are still not fully understood. Traditional one-by-one approaches, including western blotting and histochemistry, are insufficient to examine the extensive changes of endometrial proteome. Although genomics and transcriptomics studies have identified several significant genes, the underlying mechanism remains to be uncovered owing to post-transcriptional and post-translational modifications. Proteomic technologies are high throughput in protein identification, and they are now intensively used to identify diagnostic and prognostic markers in the field of reproductive medicine. There is a series of studies analyzing endometrial proteomic profile, which has provided a mechanistic insight into implantation failure. These published studies mainly focused on the difference between pre-receptive and receptive stages of endometrium, as well as on the alternation of endometrial proteomics in women with reproductive failure. Here, we review recent data from proteomic analyses regarding endometrium around the time of embryo implantation and propose possible future research directions.
Collapse
Affiliation(s)
- Xi Guo
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|
20
|
Azkargorta M, Bregón-Villahoz M, Escobes I, Ibáñez-Pérez J, Iloro I, Iglesias M, Diez-Zapirain M, Rabanal A, Prieto B, Moragues MD, Matorras R, Elortza F. In-depth proteomics and natural peptidomics analyses reveal antibacterial peptides in human endometrial fluid. J Proteomics 2020; 216:103652. [DOI: 10.1016/j.jprot.2020.103652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
|
21
|
Matorras R, Exposito A, Ferrando M, Mendoza R, Larreategui Z, Laínz L, Aranburu L, Andrade F, Aldámiz-Echevarria L, Ruiz-Larrea MB, Ruiz-Sanz JI. Oocytes of women who are obese or overweight have lower levels of n-3 polyunsaturated fatty acids compared with oocytes of women with normal weight. Fertil Steril 2020; 113:53-61. [DOI: 10.1016/j.fertnstert.2019.08.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022]
|
22
|
Matorras R, Martinez-Arranz I, Arretxe E, Iruarrizaga-Lejarreta M, Corral B, Ibañez-Perez J, Exposito A, Prieto B, Elortza F, Alonso C. The lipidome of endometrial fluid differs between implantative and non-implantative IVF cycles. J Assist Reprod Genet 2019; 37:385-394. [PMID: 31865491 DOI: 10.1007/s10815-019-01670-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To characterize the most relevant changes in the lipidome of endometrial fluid aspirate (EFA) in non-implantative cycles. DESIGN Lipidomics in a prospective cohort study. SETTINGS Reproductive unit of a university hospital. PATIENTS Twenty-nine women undergoing an IVF cycle. Fifteen achieved pregnancy and 14 did not. INTERVENTION Endometrial fluid aspiration immediately before performing embryo transfer. MAIN OUTCOME MEASURES Clinical pregnancy rate and lipidomic profiles obtained on an ultra-high performance liquid chromatography coupled to time-of-flight mass spectrometry (UHPLC-ToF-MS)-based analytical platform. RESULTS The comparative analysis of the lipidomic patterns of endometrial fluid in implantative and non-implantative IVF cycles revealed eight altered metabolites: seven glycerophospholipids and an omega-6 polyunsaturated fatty acid. Then, women with a non-implantative cycle were accurately classified with a support vector machine algorithm including these eight lipid metabolites. The diagnostic performances of the algorithm showed an area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of 0.893 ± 0.07, 85.7%, 80.0%, and 82.8%, respectively. CONCLUSION A predictive lipidomic signature linked to the implantative status of the endometrial fluid has been found.
Collapse
Affiliation(s)
- Roberto Matorras
- Human Reproduction Unit, Cruces University Hospital, BioCruces, University of the Basque Country, Bilbao, Spain. .,Instituto Valenciano de Infertilidad, IVI, Bilbao, Spain.
| | | | - Enara Arretxe
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | | | - Blanca Corral
- Human Reproduction Unit, Cruces University Hospital, BioCruces, University of the Basque Country, Bilbao, Spain
| | - Jone Ibañez-Perez
- Human Reproduction Unit, Cruces University Hospital, BioCruces, University of the Basque Country, Bilbao, Spain
| | - Antonia Exposito
- Human Reproduction Unit, Cruces University Hospital, BioCruces, University of the Basque Country, Bilbao, Spain
| | - Begoña Prieto
- Human Reproduction Unit, Cruces University Hospital, BioCruces, University of the Basque Country, Bilbao, Spain.,Instituto Valenciano de Infertilidad, IVI, Bilbao, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| |
Collapse
|
23
|
Bonetti TC, Haddad DC, Domingues TS, Alegretti JR, Motta ELA, Seeley K, Silva ID. Expressed proteins and activated pathways in conditioned embryo culture media from IVF patients are diverse according to infertility factors. JBRA Assist Reprod 2019; 23:352-360. [PMID: 31251011 PMCID: PMC6798601 DOI: 10.5935/1518-0557.20190039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Given that the embryo culture medium secretome reflects the embryo development, we hypothesize that protein profiles are affected according to infertility factors, which can be responsible for detrimental embryonic developmental competence. The aim of this study was to screen the protein profile of conditioned embryo culture media in patients presenting deep infiltrating endometriosis (ENDO) and polycystic ovarian syndrome (PCOS) undergoing IVF, by proteomics approaches. The control group was constituted by tubal factor patients. METHODS Patients underwent in vitro fertilization (IVF) treatment as routine and oocytes were fertilized by ICSI. The embryos were group cultured until day 3 of development, and after transfer the culture media were collected. For the proteomics analysis, two pools of samples were prepared for groups CONTROL and PCOS, and 4 pools of samples for group DIE. Samples were prepared to deplete high abundant proteins and followed evaluated by high throughput proteomics approach. RESULTS The embryonic organ and tissue development were physiological functions activated, based on proteins identified in the 3 study groups of samples. The samples coming from DIE patients presented a high calcium activity and on the other hand, embryos coming from PCOS patients showed a decreased calcium action. Other pathways as grow factors through the EGF signaling pathway overexpressed in ENDO culture medium and protein kinase A in PCOS were also observed. CONCLUSIONS Proteomic embryonic secretome will advance our knowledge of early embryogenesis and additionally could lead to improved selection of embryos for transfer warrants further investigation.
Collapse
Affiliation(s)
- Tatiana Cs Bonetti
- Disciplina de Ginecologia Endocrinológica, Departamento de Ginecologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP-EPM). Brasil
| | - Debora Cm Haddad
- Setor Integrado de Reprodução Humana, Departamento de Urologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP-EPM). Brasil
| | - Thais S Domingues
- Disciplina de Ginecologia Endocrinológica, Departamento de Ginecologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP-EPM). Brasil.,Huntington - Medicina Reprodutiva. Brasil
| | | | - Eduardo LA Motta
- Disciplina de Ginecologia Endocrinológica, Departamento de Ginecologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP-EPM). Brasil.,Huntington - Medicina Reprodutiva. Brasil
| | - Kent Seeley
- Proteomics and Mass Spectrometry Facility, Center for Drug Discovery and Innovation (CDDI), University of South Florida (USF). USA
| | - Ismael Dcg Silva
- Disciplina de Ginecologia Endocrinológica, Departamento de Ginecologia, Escola Paulista de Medicina da Universidade Federal de São Paulo (UNIFESP-EPM). Brasil
| |
Collapse
|