1
|
Abi Habib P, Bucak M, Crispi F, Gomez O, Turan O, Turan S. Fetal heart, brain and placenta: introducing a three-way (patho)physiological pairing. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2025. [PMID: 40387119 DOI: 10.1002/uog.29250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/29/2025] [Accepted: 04/08/2025] [Indexed: 05/20/2025]
Affiliation(s)
- P Abi Habib
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Bucak
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - F Crispi
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clinic and Hospital Sant Joan de Déu, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - O Gomez
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clinic and Hospital Sant Joan de Déu, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - O Turan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Turan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Science, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Pierucci UM, Tonni G, Pelizzo G, Paraboschi I, Werner H, Ruano R. Artificial Intelligence in Fetal Growth Restriction Management: A Narrative Review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025; 53:825-831. [PMID: 39887783 PMCID: PMC12087706 DOI: 10.1002/jcu.23918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
This narrative review examines the integration of Artificial Intelligence (AI) in prenatal care, particularly in managing pregnancies complicated by Fetal Growth Restriction (FGR). AI provides a transformative approach to diagnosing and monitoring FGR by leveraging advanced machine-learning algorithms and extensive data analysis. Automated fetal biometry using AI has demonstrated significant precision in identifying fetal structures, while predictive models analyzing Doppler indices and maternal characteristics improve the reliability of adverse outcome predictions. AI has enabled early detection and stratification of FGR risk, facilitating targeted monitoring strategies and individualized delivery plans, potentially improving neonatal outcomes. For instance, studies have shown enhancements in detecting placental insufficiency-related abnormalities when AI tools are integrated with traditional ultrasound techniques. This review also explores challenges such as algorithm bias, ethical considerations, and data standardization, underscoring the importance of global accessibility and regulatory frameworks to ensure equitable implementation. The potential of AI to revolutionize prenatal care highlights the urgent need for further clinical validation and interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Gabriele Tonni
- Department of Obstetrics & Neonatology, and, ResearcherUniversità degli Studi di Modena e Reggio Emilia—Sede di Reggio EmiliaReggio EmiliaItaly
| | - Gloria Pelizzo
- Department of Pediatric Surgery“V. Buzzi” Children's HospitalMilanItaly
- Department of Biomedical and Clinical ScienceUniversity of MilanoMilanItaly
| | - Irene Paraboschi
- Department of Biomedical and Clinical ScienceUniversity of MilanoMilanItaly
| | - Heron Werner
- Biodesign Lab Dasa/PUC‐RioPontificia Universidade Catolica Rio de JaneiroRio de JaneiroBrazil
| | - Rodrigo Ruano
- Division of Maternal‐Fetal Medicine, Department of Maternal and Fetal Medicine, Obstetrics and GynecologyUniversity of Miami, Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
3
|
Salzillo C, La Verde M, Imparato A, Molitierno R, Lucà S, Pagliuca F, Marzullo A. Cardiovascular Diseases in Public Health: Chromosomal Abnormalities in Congenital Heart Disease Causing Sudden Cardiac Death in Children. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1976. [PMID: 39768857 PMCID: PMC11679308 DOI: 10.3390/medicina60121976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Chromosomal abnormalities (CAs) are changes in the number or structure of chromosomes, manifested as alterations in the total number of chromosomes or as structural abnormalities involving the loss, duplication, or rearrangement of chromosomal segments. CAs can be inherited or can occur spontaneously, leading to congenital malformations and genetic diseases. CAs associated with cardiovascular diseases cause structural or functional alterations of the heart, affecting the cardiac chambers, valves, coronary arteries, aorta, and cardiac conduction, thus increasing the likelihood of arrhythmias, cardiac arrest, and sudden cardiac death (SCD). An early diagnosis and the adequate management of chromosomal abnormalities associated with cardiovascular diseases are essential to prevent SCD, which is a serious public health problem today. In our review, we analyzed the structural and functional CAs responsible for congenital heart disease (CHD) that increase the risk of SCD and analyzed the prevention strategies to be implemented to reduce SCD.
Collapse
Affiliation(s)
- Cecilia Salzillo
- PhD Course in Public Health, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.V.); (A.I.); (R.M.)
| | - Amalia Imparato
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.V.); (A.I.); (R.M.)
| | - Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.V.); (A.I.); (R.M.)
| | - Stefano Lucà
- PhD Course in Public Health, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesca Pagliuca
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Andrea Marzullo
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70121 Bari, Italy
| |
Collapse
|
4
|
Lan L, Luo D, Lian J, She L, Zhang B, Zhong H, Wang H, Wu H. Chromosomal Abnormalities Detected by Chromosomal Microarray Analysis and Karyotype in Fetuses with Ultrasound Abnormalities. Int J Gen Med 2024; 17:4645-4658. [PMID: 39429961 PMCID: PMC11488349 DOI: 10.2147/ijgm.s483290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Chromosomal microarray analysis (CMA) is a first-line test to assess the genetic etiology of fetal ultrasound abnormalities. The aim of this study was to evaluate the effectiveness of CMA in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities, including structural abnormalities and non-structural abnormalities. Methods A retrospective study was conducted on 368 fetuses with abnormal ultrasound who received interventional prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Samples of villi, amniotic fluid, and umbilical cord blood were collected according to different gestational weeks, and karyotype and CMA analyses were performed. The detection rate of chromosomal abnormalities in different ultrasonic abnormalities was analyzed. Results There were 368 fetuses with abnormal ultrasound, including 114 (31.0%) with structural abnormalities, 225 (61.1%) with non-structural abnormalities, and 29 (7.9%) with structural combined with non-structural abnormalities. The detection rate of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) of CMA in fetuses with structural abnormalities was 5.26% (6/114), the detection rate of karyotype was 2.63% (3/114), and the additional diagnosis rate of CMA was 2.63%. In the fetuses with ultrasonic non-structural abnormalities, the detection rate of karyotype was 6.22% (14/225), the detection rate of aneuploidy and P/LP CNVs in fetuses with ultrasonic structural abnormalities was 9.33% (21/225), and the additional diagnosis rate of CMA was 3.11%. There was no significant difference in chromosome abnormality detection rate of CMA among structural abnormality, non-structural abnormality, and structural abnormality combined with non-structural abnormality groups (5.3%, 9.3%, and 13.8%, p = 0.241), also among multiple ultrasonic abnormality and single ultrasonic abnormality groups (14.8%, and 7.3%, p = 0.105). Conclusion CMA can significantly improve the detection rate of genetic abnormalities in prenatal diagnosis of ultrasonic abnormal fetuses compared with karyotype analysis. CMA is a more effective tool than karyotyping alone in detecting chromosomal abnormalities in fetuses with ultrasound abnormalities.
Collapse
Affiliation(s)
- Liubing Lan
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Dandan Luo
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Jianwen Lian
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Lingna She
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Department of Ultrasound, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Bosen Zhang
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
- Department of Ultrasound, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Hua Zhong
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Huaxian Wang
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou, People’s Republic of China
| |
Collapse
|
5
|
Chen X, Lan L, Wu H, Zeng M, Zheng Z, Zhong Q, Lai F, Hu Y. Chromosomal Microarray Analysis in Fetuses with Ultrasound Abnormalities. Int J Gen Med 2024; 17:3531-3540. [PMID: 39161407 PMCID: PMC11332413 DOI: 10.2147/ijgm.s472906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Objective To explore and evaluate the value of chromosomal microarray analysis (CMA) in prenatal diagnosis of fetuses with ultrasound abnormalities. Methods A retrospective analysis was performed on 370 fetuses with ultrasound abnormalities received invasive prenatal diagnosis at Meizhou People's Hospital from October 2022 to December 2023. Fetal specimens were analyzed by CMA, and the detection rates of aneuploidy and pathogenic (P)/likely pathogenic (LP) copy number variations (CNVs) in ultrasound structural abnormalities (malformations of fetal anatomy) and non-structural abnormalities (abnormalities of fetal nonanatomical structure) were analyzed. Results There were 114 (30.8%) cases with isolated ultrasound structural abnormalities, 226 (61.1%) cases with isolated non-structural abnormalities (182 isolated ultrasound soft markers abnormalities, 30 isolated fetal growth restriction (FGR), and 8 isolated abnormalities of amniotic fluid volume), and 30 (8.1%) cases with both structural and non-structural abnormalities. The overall detection rate of aneuploidy and P/LP CNVs in isolated ultrasonic structural abnormalities was 5.3%, among which cardiovascular system abnormalities were the highest. In addition, the largest number of fetuses with non-structural abnormalities was nuchal translucency (NT) thickening (n = 81), followed by ventriculomegaly (n = 29), and nasal bone dysplasia (n = 24). The detection rate of chromosomal abnormalities of fetuses with abnormal ultrasound soft markers was 9.9%, and the detection rate in single abnormal ultrasound soft marker, and multiple ultrasound soft markers abnormalities was 9.7% (16/165) and 11.8% (2/17), respectively. Moreover, the detection rate of chromosomal abnormalities of fetuses with FGR and structural abnormalities combined with non-structural abnormalities was 6.7% (2/30), and 13.3% (4/30), respectively. Conclusion The incidence of chromosomal abnormalities (aneuploidy and P/LP CNVs) varies among different fetal ultrasound abnormalities.
Collapse
Affiliation(s)
- Xiaoqin Chen
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Liubing Lan
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Heming Wu
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Mei Zeng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhiyuan Zheng
- Department of Prenatal Diagnostic Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Qiuping Zhong
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Fengdan Lai
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yonghe Hu
- Department of Obstetrics, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
6
|
Nüsken E, Appel S, Saschin L, Kuiper-Makris C, Oberholz L, Schömig C, Tauscher A, Dötsch J, Kribs A, Alejandre Alcazar MA, Nüsken KD. Intrauterine Growth Restriction: Need to Improve Diagnostic Accuracy and Evidence for a Key Role of Oxidative Stress in Neonatal and Long-Term Sequelae. Cells 2024; 13:501. [PMID: 38534344 PMCID: PMC10969486 DOI: 10.3390/cells13060501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Intrauterine growth restriction (IUGR) and being small for gestational age (SGA) are two distinct conditions with different implications for short- and long-term child development. SGA is present if the estimated fetal or birth weight is below the tenth percentile. IUGR can be identified by additional abnormalities (pathological Doppler sonography, oligohydramnion, lack of growth in the interval, estimated weight below the third percentile) and can also be present in fetuses and neonates with weights above the tenth percentile. There is a need to differentiate between IUGR and SGA whenever possible, as IUGR in particular is associated with greater perinatal morbidity, prematurity and mortality, as well as an increased risk for diseases in later life. Recognizing fetuses and newborns being "at risk" in order to monitor them accordingly and deliver them in good time, as well as to provide adequate follow up care to ameliorate adverse sequelae is still challenging. This review article discusses approaches to differentiate IUGR from SGA and further increase diagnostic accuracy. Since adverse prenatal influences increase but individually optimized further child development decreases the risk of later diseases, we also discuss the need for interdisciplinary follow-up strategies during childhood. Moreover, we present current concepts of pathophysiology, with a focus on oxidative stress and consecutive inflammatory and metabolic changes as key molecular mechanisms of adverse sequelae, and look at future scientific opportunities and challenges. Most importantly, awareness needs to be raised that pre- and postnatal care of IUGR neonates should be regarded as a continuum.
Collapse
Affiliation(s)
- Eva Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Sarah Appel
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Leon Saschin
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Celien Kuiper-Makris
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Laura Oberholz
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Charlotte Schömig
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Anne Tauscher
- Department of Obstetrics and Gynecology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jörg Dötsch
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Angela Kribs
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| | - Miguel A. Alejandre Alcazar
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC) and Cardiopulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Kai-Dietrich Nüsken
- Clinic and Polyclinic for Pediatric and Adolescent Medicine, University Hospital Cologne, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany; (E.N.)
| |
Collapse
|
7
|
Kothari SS, Pathak NL, Banerji N, Champaneri B. Intermittent flow reversal in the aortic arch. Ann Pediatr Cardiol 2023; 16:385-386. [PMID: 38766454 PMCID: PMC11098285 DOI: 10.4103/apc.apc_101_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 05/22/2024] Open
Affiliation(s)
- Shyam S Kothari
- Department of Cardiology, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India. E-mail:
| | - Nihar Lalitkumar Pathak
- Department of Cardiology, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India. E-mail:
| | - Nayan Banerji
- Department of Cardiology, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India. E-mail:
| | - Bhavik Champaneri
- Department of Cardiology, U. N. Mehta Institute of Cardiology and Research Centre, Ahmedabad, Gujarat, India. E-mail:
| |
Collapse
|