1
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus-A Bioinformatic Study of Synaptic Transmission in the Cochlear Nucleus. Biomedicines 2024; 12:1615. [PMID: 39062188 PMCID: PMC11274367 DOI: 10.3390/biomedicines12071615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to identify key proteins of synaptic transmission in the cochlear nucleus (CN) that are involved in normal hearing, acoustic stimulation, and tinnitus. A gene list was compiled from the GeneCards database using the keywords "synaptic transmission" AND "tinnitus" AND "cochlear nucleus" (Tin). For comparison, two gene lists with the keywords "auditory perception" (AP) AND "acoustic stimulation" (AcouStim) were built. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs), together referred to as key proteins. The top1 key proteins of the Tin-process were BDNF, NTRK1, NTRK3, and NTF3; the top2 key proteins are FOS, JUN, CREB1, EGR1, MAPK1, and MAPK3. Highly significant GO terms in CN in tinnitus were "RNA polymerase II transcription factor complex", "late endosome", cellular response to cadmium ion", "cellular response to reactive oxygen species", and "nerve growth factor signaling pathway", indicating changes in vesicle and cell homeostasis. In contrast to the spiral ganglion, where important changes in tinnitus are characterized by processes at the level of cells, important biological changes in the CN take place at the level of synapses and transcription.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Leibniz Society of Science Berlin, 10117 Berlin, Germany;
| | - Marlies Knipper
- Leibniz Society of Science Berlin, 10117 Berlin, Germany;
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, 72076 Tübingen, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| |
Collapse
|
2
|
Shi WJ, Long XB, Li SY, Ma DD, Liu F, Zhang JG, Lu ZJ, Ying GG. Dydrogesterone and levonorgestrel at environmentally relevant concentrations have antagonist effects with rhythmic oscillation in brain and eyes of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106177. [PMID: 35512552 DOI: 10.1016/j.aquatox.2022.106177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Synthetic progestins levonorgestrel (LNG) and dydrogesterone (DDG) are frequency detected in surface water. Combined effects of LNG and DDG on gonad differentiation are similar to LNG single exposure in juvenile zebrafish. However, LNG and DDG mixtures have stronger effects on spermatogenesis in testes of adult zebrafish, which show variable at different life stage. Effects of LNG and DDG mixtures on eyes and brain remain unknown. Here we investigated effects of LNG, DDG and their mixtures on eyes and brain. Zebrafish were exposed to LNG, DDG and their mixtures from 2 hpf to 144 dpf. Rhythm and vision related biological processes were enriched in eyes and brain in LNG and DDG treatments, which indicated rhythmic oscillation in eyes and brain. The qPCR data revealed that both LNG and DDG decreased transcription of arntl2 and clocka, while increased transcription of per1a, per1b, rpe65a and tefa in eyes and brain. However, DDG and LNG mixtures had slight effect on transcription of genes related to rhythm and vision. In addition, LNG and DDG reduced the thickness of inner nuclear layer in the eyes. Bliss independent model revealed that LNG and DDG had antagonist effects on transcription and histology in eyes and brain. Moreover, LNG and DDG formed the same hydrogen bonds with green-sensitive opsin-4 and rhodopsin kinase GRK7a. Taken together, LNG and DDG competed with each other for the same binding residues resulting in antagonist effect in their mixtures treatments, and have significant ecological implications to assess combined effects of progestins mixtures on fish in different organs.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang Liu
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Ma DD, Jiang YX, Zhang JG, Fang GZ, Huang GY, Shi WJ, Ying GG. Transgenerational effects of androstadienedione and androstenedione at environmentally relevant concentrations in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127261. [PMID: 34844370 DOI: 10.1016/j.jhazmat.2021.127261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Androgens androstadienedione (ADD) and androstenedione (AED) are predominant steroid hormones in surface water, and can disrupt the endocrine system in fish. However, little is known about the transgenerational effects of ADD and AED in fish. In the present study, F0 generation was exposed to ADD and AED from 21 to 144 days post-fertilization (dpf) at nominal concentrations of 5 (L), 50 (M) and 500 (H) ng L-1, and F1 generation was domesticated in clear water for 144 dpf. The sex ratio, histology and transcription in F0 and F1 generations were examined. In the F0 generation, ADD and AED tended to be estrogenic in zebrafish, resulting in female biased zebrafish populations. In the F1 generation, ADD at the H level caused 63.5% females, while AED at the H level resulted in 78.7% males. In brain, ADD and AED had similar effects on circadian rhythm in the F0 and F1 generations. In the F1 eleutheroembryos, transcriptomic analysis indicated that neuromast hair cell related biological processes (BPs) were overlapped in the ADD and AED groups. Taken together, ADD and AED at environmentally relevant concentrations had transgenerational effects on sex differentiation and transcription in zebrafish.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
4
|
Song A, Cho GW, Vijayakumar KA, Moon C, Ang MJ, Kim J, Park I, Jang CH. Neuroprotective Effect of Valproic Acid on Salicylate-Induced Tinnitus. Int J Mol Sci 2021; 23:ijms23010023. [PMID: 35008469 PMCID: PMC8744959 DOI: 10.3390/ijms23010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
High-dose salicylate induces temporary moderate hearing loss and the perception of a high-pitched tinnitus in humans and animals. Previous studies demonstrated that high doses of salicylate increase N-methyl-d-aspartate (NMDA) receptor levels, resulting in a rise in Ca2+ influx and induction of excitotoxicity. Glutamate excitotoxicity is associated with failure in the maintenance of calcium homeostasis, mitochondrial dysfunction, and production of reactive oxygen species (ROS). Valproic acid (VPA) is widely used for the management of bipolar disorder, epilepsy, and migraine headaches, and is known to regulate NMDA receptor activity. In this study, we examined the beneficial effects of VPA in a salicylate-induced tinnitus model in vitro and in vivo. Cells were pretreated with VPA followed by salicylate treatment. The expression levels of NMDA receptor subunit NR2B, phosphorylated cAMP response element-binding protein—an apoptosis marker, and intracellular levels of ROS were measured using several biochemical techniques. We observed increased expression of NR2B and its related genes TNFα and ARC, increased intracellular ROS levels, and induced expression of cleaved caspase-3. These salicylate-induced changes were attenuated in the neuronal cell line SH-SY5Y and rat cortical neurons after VPA pretreatment. Together, these results provide evidence of the beneficial effects of VPA in a salicylate-induced temporary hearing loss and tinnitus model.
Collapse
Affiliation(s)
- Anji Song
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Gwang-Won Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Karthikeyan A. Vijayakumar
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (A.S.); (G.-W.C.); (K.A.V.)
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.M.); (C.H.J.); Tel.: +82-62-220-6774 (C.H.J.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea;
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Ilyong Park
- Department of Biomedical Engineering, School of Medicine, Dankook University, Cheonan 31116, Korea;
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
- Correspondence: (C.M.); (C.H.J.); Tel.: +82-62-220-6774 (C.H.J.)
| |
Collapse
|
5
|
Li ZC, Fang BX, Yuan LX, Zheng K, Wu SX, Zhong N, Zeng XL. Analysis of Studies in Tinnitus-Related Gene Research. Noise Health 2021; 23:95-107. [PMID: 34975125 PMCID: PMC8772442 DOI: 10.4103/nah.nah_57_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Objective Summarize and analyze the current research results of tinnitus-related genes, explore the potential links between the results of each study, and provide reference for subsequent studies. Methods Collect and sort out the research literature related to tinnitus genes included in PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang Data Knowledge Service Platform before December 31, 2019. Then the relevant contents of the literature were sorted out and summarized. Results Fifty-one articles were finally selected for analysis: 31 articles (60.8%) were classified as researches on animal models of tinnitus, and 20 (39.2%) as researches on tinnitus patients. Existing studies have shown that genes related to oxidative stress, inflammatory response, nerve excitation/inhibition, and nerve growth are differentially expressed in tinnitus patients or animal models, and have presented the potential links between genes or proteins in the occurrence and development of tinnitus. Conclusion The research on tinnitus-related genes is still in the exploratory stage, and further high-quality research evidence is needed.
Collapse
Affiliation(s)
- Zhi-Cheng Li
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bi-Xing Fang
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, China
| | - Lian-Xiong Yuan
- Department of Science and Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ke Zheng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Xin Wu
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nanbert Zhong
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, USA
| | - Xiang-Li Zeng
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Singh S, Singh TG, Rehni AK. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:750-779. [PMID: 32914725 DOI: 10.2174/1871527319666200910153827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Epilepsy is the second most common neurological disease with abnormal neural activity involving the activation of various intracellular signalling transduction mechanisms. The molecular and system biology mechanisms responsible for epileptogenesis are not well defined or understood. Neuroinflammation, neurodegeneration and Epigenetic modification elicit epileptogenesis. The excessive neuronal activities in the brain are associated with neurochemical changes underlying the deleterious consequences of excitotoxicity. The prolonged repetitive excessive neuronal activities extended to brain tissue injury by the activation of microglia regulating abnormal neuroglia remodelling and monocyte infiltration in response to brain lesions inducing axonal sprouting contributing to neurodegeneration. The alteration of various downstream transduction pathways resulted in intracellular stress responses associating endoplasmic reticulum, mitochondrial and lysosomal dysfunction, activation of nucleases, proteases mediated neuronal death. The recently novel pharmacological agents modulate various receptors like mTOR, COX-2, TRK, JAK-STAT, epigenetic modulators and neurosteroids are used for attenuation of epileptogenesis. Whereas the various molecular changes like the mutation of the cell surface, nuclear receptor and ion channels focusing on repetitive episodic seizures have been explored by preclinical and clinical studies. Despite effective pharmacotherapy for epilepsy, the inadequate understanding of precise mechanisms, drug resistance and therapeutic failure are the current fundamental problems in epilepsy. Therefore, the novel pharmacological approaches evaluated for efficacy on experimental models of epilepsy need to be identified and validated. In addition, we need to understand the downstream signalling pathways of new targets for the treatment of epilepsy. This review emphasizes on the current state of novel molecular targets as therapeutic approaches and future directions for the management of epileptogenesis. Novel pharmacological approaches and clinical exploration are essential to make new frontiers in curing epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, Florida 33101, United States
| |
Collapse
|
7
|
Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast 2021; 2021:8833087. [PMID: 33510780 PMCID: PMC7822664 DOI: 10.1155/2021/8833087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.
Collapse
|
8
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Moselhy AAA, Beheiry RR, Said EN. Curcumin mitigates neurotoxic and neurobehavioral changes of gentamicin and sodium salicylate in rats by adjusting oxidative stress and apoptosis. Life Sci 2020; 265:118824. [PMID: 33278387 DOI: 10.1016/j.lfs.2020.118824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Currently, antibiotics and salicylates are the most highly consumed medications worldwide. The side effects of these pharmaceuticals on the nervous system have been little investigated. Thus, this study aimed to examine the influence of the gentamicin (GM) and sodium salicylates (SS) on neurobehavioral functions, including locomotors function, memory, and sensorimotor functions together with gamma-aminobutyric acid (GABA) neurotransmitter levels. Also, oxidative stress, lipid peroxidation, and apoptotic indicators of brain tissue were assessed. Additionally, the histopathological architecture of brain tissues was investigated. This study also evaluated the curcumin (CUR) efficacy to counteract the GM or SS induced neurotoxic impacts in rats. For this purpose, seven groups were administered physiological saline (1 ml/rat; orally), olive oil (1 ml/rat; orally), CUR (50 mg/kg bwt; orally), GM (120 mg/kg bwt; intraperitoneally), SS (300 mg /kg bwt; intraperitoneally), CUR + GM, or CUR + SS for consecutive 15 days. The results revealed that GM and SS exposure evoked impaired memory, sensorimotor deficit functions, and depressive-like behavior together with the depletion of GABA. GM and SS exposure elevated malondialdehyde and Caspase-3 levels, but total antioxidant capacity and Bcl-2 levels were reduced. Besides, GM and SS exposure induced distinct pathological perturbations in cerebral cortices and hippocampus tissues. CUR significantly reversed the GM and SS harmful impacts. In conclusion, these findings verified that CUR could be a biologically efficient protective intervention against GM and SS induced neurotoxic impacts and neurobehavioral aberrations.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Hosseinzadeh A, Kamrava SK, Moore BCJ, Reiter RJ, Ghaznavi H, Kamali M, Mehrzadi S. Molecular Aspects of Melatonin Treatment in Tinnitus: A Review. Curr Drug Targets 2020; 20:1112-1128. [PMID: 30892162 DOI: 10.2174/1389450120666190319162147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Tinnitus is a hearing disorder characterized by the perception of sound without external acoustic stimuli, which is caused by damage to the auditory system in response to excessive levels of noise, ototoxic agents and aging. Neural plasticity, oxidative/nitrosative stress and apoptosis play important roles in the pathogenesis of tinnitus. The expression of neural plasticity related to excessive glutamatergic neurotransmission leads to generation of abnormal sound in one's ears or head. Furthermore, hyperactivation and over-expression of NMDA receptors in response to excessive release of glutamate contribute to the calcium overload in the primary auditory neurons and subsequent cytotoxicity. Reactive oxygen/nitrogen species are endogenously produced by different type of cochlear cells under pathological conditions, which cause direct damage to the intracellular components and apoptotic cell death. Cochlear hair-cell death contributes to the progressive deafferentation of auditory neurons, which consequently leads to the aberrant activity in several parts of the auditory pathway. Therefore, targeting neural plasticity, oxidative/nitrosative stress, apoptosis and autophagy may ameliorate tinnitus. Melatonin is an endogenously produced indoleamine synchronizing circadian and circannual rhythms. Based on laboratory studies indicating the protective effect of melatonin against cochlear damage induced by acoustic trauma and ototoxic agents, and also clinical studies reporting the ability of melatonin to minimize the severity of tinnitus, melatonin is suggested to be a treatment option for the patient with tinnitus. Herein, we describe the ameliorative effect of melatonin on tinnitus, focusing on neural plasticity, oxidative/nitrosative stress, apoptotsis and autophagy.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Kamali
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Long-term Administration of Salicylate-induced Changes in BDNF Expression and CREB Phosphorylation in the Auditory Cortex of Rats. Otol Neurotol 2019; 39:e173-e180. [PMID: 29342042 PMCID: PMC5821486 DOI: 10.1097/mao.0000000000001717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We investigated whether salicylate induces tinnitus through alteration of the expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, tyrosine kinase receptor B (TrkB), cAMP-responsive element-binding protein (CREB), and phosphorylated CREB (p-CREB) in the auditory cortex (AC).
Collapse
|
12
|
Lee SY, Han SY, Shim YJ, Han JJ, Cho D, Kim JE, Kim YH. Effect of Ginkgo Biloba Extract on N-Methyl-D-Aspartic Acid Receptor Subunit 2B Expression in a Salicylate-Induced Ototoxicity Model. Clin Exp Otorhinolaryngol 2018; 12:169-175. [PMID: 30360042 PMCID: PMC6453795 DOI: 10.21053/ceo.2018.00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives. Sodium salicylate (SS) is well known for its ototoxic properties that induce functional and morphological changes in the cochlea and brain. Ginkgo biloba extract (GBE) has been widely used for treatment of various neurodegenerative diseases; however, its effects on salicylate-induced ototoxicity remain unclear. Herein, we examined the effects of EGb 761 (EGb), a standard form of GBE, on the plasticity of the N-methyl-D-aspartate receptor subunit 2B (GluN2B) in the inferior colliculus (IC) following SS administration. Methods. Seven-week-old Sprague Dawley rats (n=24) were randomly allocated to control, SS, EGb, and EGb+SS groups. The SS group received a single intraperitoneal SS injection (350 mg/kg), the EGb group received EGb orally for 5 consecutive days (40 mg/kg), and the EGb+SS group received EGb for 5 consecutive days, followed by an SS injection. The auditory brainstem responses (ABRs) were assessed at baseline and 2 hours after SS administration. GluN2B expression was examined by Western blot and immunohistochemistry. Results. There were no significant differences in ABR threshold shifts among the groups. The expression of the GluN2B protein normalized by which of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was significantly lower in the EGb+SS group, as compared to the SS group (P=0.012). Weak and diffused GluN2B immunoreactivity was detected in the IC neural cells of the EGb+SS group, while those of the SS group exhibited strong and diffused GluN2B positivity. Conclusion. EGb may play a role in regulating the GluN2B expression in the IC of salicylate-induced ototoxicity model.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Yoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Joon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - DeukTae Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Gröschel M, Götze R, Müller S, Ernst A, Basta D. Central Nervous Activity upon Systemic Salicylate Application in Animals with Kanamycin-Induced Hearing Loss--A Manganese-Enhanced MRI (MEMRI) Study. PLoS One 2016; 11:e0153386. [PMID: 27078034 PMCID: PMC4831817 DOI: 10.1371/journal.pone.0153386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effect of systemic salicylate on central auditory and non-auditory structures in mice. Since cochlear hair cells are known to be one major target of salicylate, cochlear effects were reduced by using kanamycin to remove or impair hair cells. Neuronal brain activity was measured using the non-invasive manganese-enhanced magnetic resonance imaging technique. For all brain structures investigated, calcium-related neuronal activity was increased following systemic application of a sodium salicylate solution: probably due to neuronal hyperactivity. In addition, it was shown that the central effect of salicylate was not limited to the auditory system. A general alteration of calcium-related activity was indicated by an increase in manganese accumulation in the preoptic area of the anterior hypothalamus, as well as in the amygdala. The present data suggest that salicylate-induced activity changes in the auditory system differ from those shown in studies of noise trauma. Since salicylate action is reversible, central pharmacological effects of salicylate compared to those of (permanent) noise-induced hearing impairment and tinnitus might induce different pathophysiologies. These should therefore, be treated as different causes with the same symptoms.
Collapse
Affiliation(s)
- Moritz Gröschel
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Romy Götze
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Susanne Müller
- Neuroscience Research Center (NWFZ), Charité Medical School, Berlin, Germany
| | - Arne Ernst
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
| | - Dietmar Basta
- Department of Otolaryngology, Unfallkrankenhaus Berlin, Charité Medical School, Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Yi B, Hu S, Zuo C, Jiao F, Lv J, Chen D, Ma Y, Chen J, Mei L, Wang X, Huang Z, Wu H. Effects of long-term salicylate administration on synaptic ultrastructure and metabolic activity in the rat CNS. Sci Rep 2016; 6:24428. [PMID: 27068004 PMCID: PMC4828705 DOI: 10.1038/srep24428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/30/2016] [Indexed: 11/17/2022] Open
Abstract
Tinnitus is associated with neural hyperactivity in the central nervous system (CNS). Salicylate is a well-known ototoxic drug, and we induced tinnitus in rats using a model of long-term salicylate administration. The gap pre-pulse inhibition of acoustic startle test was used to infer tinnitus perception, and only rats in the chronic salicylate-treatment (14 days) group showed evidence of experiencing tinnitus. After small animal positron emission tomography scans were performed, we found that the metabolic activity of the inferior colliculus (IC), the auditory cortex (AC), and the hippocampus (HP) were significantly higher in the chronic treatment group compared with saline group (treated for 14 days), which was further supported by ultrastructural changes at the synapses. The alterations all returned to baseline 14 days after the cessation of salicylate-treatment (wash-out group), indicating that these changes were reversible. These findings indicate that long-term salicylate administration induces tinnitus, enhanced neural activity and synaptic ultrastructural changes in the IC, AC, and HP of rats due to neuroplasticity. Thus, an increased metabolic rate and synaptic transmission in specific areas of the CNS may contribute to the development of tinnitus.
Collapse
Affiliation(s)
- Bin Yi
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province China
| | - Chuantao Zuo
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai China
| | - Fangyang Jiao
- PET Center, Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai China
| | - Jingrong Lv
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China
| | - Dongye Chen
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Yufei Ma
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China
| | - Jianyong Chen
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Ling Mei
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Xueling Wang
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Zhiwu Huang
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai China.,Laboratory of Auditory Neuroscience, Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai China
| |
Collapse
|