1
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Zou Y, Luo J, Chen L, Wang X, Liu W, Wang RH, Li SC. Identifying T-cell clubs by embracing the local harmony between TCR and gene expressions. Mol Syst Biol 2024; 20:1329-1345. [PMID: 39496799 PMCID: PMC11612385 DOI: 10.1038/s44320-024-00070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
T cell receptors (TCR) and gene expression provide two complementary and essential aspects in T cell understanding, yet their diversity presents challenges in integrative analysis. We introduce TCRclub, a novel method integrating single-cell RNA sequencing data and single-cell TCR sequencing data using local harmony to identify functionally similar T cell groups, termed 'clubs'. We applied TCRclub to 298,106 T cells across seven datasets encompassing various diseases. First, TCRclub outperforms the state-of-the-art methods in clustering T cells on a dataset with over 400 verified peptide-major histocompatibility complex categories. Second, TCRclub reveals a transition from activated to exhausted T cells in cholangiocarcinoma patients. Third, TCRclub discovered the pathways that could intervene in response to anti-PD-1 therapy for patients with basal cell carcinoma by analyzing the pre-treatment and post-treatment samples. Furthermore, TCRclub unveiled different T-cell responses and gene patterns at different severity levels in patients with COVID-19. Hence, TCRclub aids in developing more effective immunotherapeutic strategies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Yiping Zou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Jiaqi Luo
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lingxi Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Computer Science, City University of Hong Kong (Dongguan), Dongguan, China
| | - Wei Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Ruo Han Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
3
|
Tan D, Li E, Xiong S, Sun Y, Cheng W, Su Y, Lu Y. Transcriptomic and Metabolomic Analyses Reveal the Attenuating Role of Cordycepin and Cordyceps militaris Extract on Acute Liver Injury Induced by LPS in Piglets. Animals (Basel) 2024; 14:2873. [PMID: 39409822 PMCID: PMC11475243 DOI: 10.3390/ani14192873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Cordyceps militaris extract (CME) contains many bioactive compounds, mainly cordycepin (CPN). This study aimed to investigate the possible mechanisms underlying the amelioration of LPS-induced acute liver injury in piglets by CME or CPN supplementation using multi-omics analysis. Twenty-four weaned piglets were randomly distributed into 4 groups (n = 6): the control and LPS groups were fed basal diets; the CPN + LPS (CPN-LPS) and CME + LPS (CME-LPS) groups were fed the basal diets supplemented with CME or CPN. The results showed that CPN or CME supplementation significantly decreased the C-reactive protein level (p < 0.05) and improved liver tissue pathology to prevent acute liver injury after LPS treatment. Compared with LPS, the transcriptomic analysis indicated that CPN supplementation significantly downregulated cell adhesion molecules, while CME supplementation significantly downregulated inflammatory mediator regulation of TRP channels, complement and coagulation cascades and cytokine-cytokine receptor interaction. The metabolomic results showed that CPN or CME supplementation significantly reduced disease biomarker of bicyclo-prostaglandin E2, and increased levels of deoxyinosine and 3-hydroxyanthranilic acid (p < 0.05). The combined transcriptome and metabolome helped identify two metabolites PC 34:2 and PC 36:0, which may be associated with the restoration of liver cell morphology. In conclusion, CPN and CME could attenuate LPS-induced acute liver injury by regulating immune-related genes and metabolites. This study elucidates the potential protective mechanism of CPN or CME supplementation against acute liver injury.
Collapse
Affiliation(s)
- Ding Tan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Endian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Shijie Xiong
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Yue Sun
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Wenbo Cheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (E.L.); (S.X.); (W.C.)
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
4
|
Liu S, Han B, Wang R, Fang J. Elucidating the role of FOS in modulating the immune microenvironment through fibroblast and myeloid cell regulation in locoregional recurrent HNSCC. ENVIRONMENTAL TOXICOLOGY 2024; 39:4531-4546. [PMID: 38567514 DOI: 10.1002/tox.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/10/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) presents a significant clinical challenge, particularly due to its high propensity for locoregional recurrence. Current research underscores the need to unravel the complex interactions within the tumor microenvironment. This study addresses the critical gap in understanding how FOS modulates the immune landscape in HNSCC, with a focus on its influence on fibroblast and myeloid cell dynamics. METHODS Employing a comprehensive approach, we analyzed tissue samples from HNSCC patients and adjacent non-cancerous tissues using bulk RNA sequencing complemented by in-depth bioinformatics analyses, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and immune infiltration assessment. A pivotal aspect of our research involved dissecting single-cell RNA-seq data from GSE234933 to elucidate the cell-type-specific expression of FOS. RESULTS We found that FOS expression varies significantly in different cell populations in the HNSCC tumor microenvironment, especially in fibroblasts and myeloid cells. This expression difference may reflect the different roles of these cells in tumor progression and their impact on the tumor microenvironment. CONCLUSION Our results uncover a significant correlation between FOS expression and key immune and hypoxia-related pathways, suggesting its integral role in the tumor microenvironment. These findings not only enhance our understanding of HNSCC pathogenesis but also highlight FOS as a potential therapeutic target. This study marks a significant step towards addressing the urgent need for targeted interventions in HNSCC, particularly in the context of locoregional recurrence.
Collapse
Affiliation(s)
- Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|