1
|
Reyes-Madrigal F, Guma E, León-Ortiz P, Gómez-Cruz G, Mora-Durán R, Graff-Guerrero A, Kegeles LS, Chakravarty MM, de la Fuente-Sandoval C. Striatal glutamate, subcortical structure and clinical response to first-line treatment in first-episode psychosis patients. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110473. [PMID: 34748864 PMCID: PMC8643337 DOI: 10.1016/j.pnpbp.2021.110473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Recent studies have observed that patients with treatment-resistant schizophrenia as well as patients with schizophrenia who do not respond within a medication trial exhibit excess activity of the glutamate system. In this study we sought to replicate the within-trial glutamate abnormality and to investigate the potential for structural differences and treatment-induced changes to improve identification of medication responders and non-responders. METHODS We enrolled 48 medication-naïve patients in a 4-week trial of risperidone and classified them retrospectively into responders and non-responders using clinical criteria. Proton magnetic resonance spectroscopy and T1-weighted structural MRI were acquired pre- and post-treatment to quantify striatal glutamate levels and several measures of subcortical brain structure. RESULTS Patients were classified as 29 responders and 19 non-responders. Striatal glutamate was higher in the non-responders than responders both pre- and post-treatment (F1,39 = 7.15, p = .01). Volumetric measures showed a significant group x time interaction (t = 5.163, <1%FDR), and group x time x glutamate interaction (t = 4.23, <15%FDR) were seen in several brain regions. Striatal volumes increased at trend level with treatment in both groups, and a positive association of striatal volumes with glutamate levels was seen in the non-responders. CONCLUSIONS Combining anatomic measures with glutamate levels offers the potential to enhance classification of responders and non-responders to antipsychotic medications as well as to provide mechanistic understanding of the interplay between neuroanatomical and neurochemical changes induced by these medications. Ethical statement The study was approved by the Ethics and Scientific committees of the Instituto Nacional de Neurología y Neurocirugía in Mexico City. All participants over 18 years fully understood and signed the informed consent; in case the patient was under 18 years, informed consent was obtained from both parents. Participants did not receive a stipend.
Collapse
Affiliation(s)
- Francisco Reyes-Madrigal
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Pablo León-Ortiz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Gladys Gómez-Cruz
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Ricardo Mora-Durán
- Emergency Department, Hospital Fray Bernardino Álvarez, Mexico City, Mexico
| | - Ariel Graff-Guerrero
- Multimodal Neuroimaging Schizophrenia Group, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, USA
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Computational Brain Anatomy (CoBrA) Lab, Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Camilo de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| |
Collapse
|
2
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
3
|
Sasabayashi D, Takayanagi Y, Takahashi T, Furuichi A, Kobayashi H, Noguchi K, Suzuki M. Increased brain gyrification and subsequent relapse in patients with first-episode schizophrenia. Front Psychiatry 2022; 13:937605. [PMID: 36032231 PMCID: PMC9406142 DOI: 10.3389/fpsyt.2022.937605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Most schizophrenia patients experience psychotic relapses, which may compromise long-term outcome. However, it is difficult to objectively assess the actual risk of relapse for each patient as the biological changes underlying relapse remain unknown. The present study used magnetic resonance imaging (MRI) to investigate the relationship between brain gyrification pattern and subsequent relapse in patients with first-episode schizophrenia. The subjects consisted of 19 patients with and 33 patients without relapse during a 3-year clinical follow-up after baseline MRI scanning. Using FreeSurfer software, we compared the local gyrification index (LGI) between the relapsed and non-relapsed groups. In the relapsed group, we also explored the relationship among LGI and the number of relapses and time to first relapse after MRI scanning. Relapsed patients exhibited a significantly higher LGI in the bilateral parietal and left occipital areas than non-relapsed patients. In addition, the time to first relapse was negatively correlated with LGI in the right inferior temporal cortex. These findings suggest that increased LGI in the temporo-parieto-occipital regions in first-episode schizophrenia patients may be a potential prognostic biomarker that reflects relapse susceptibility in the early course of the illness.
Collapse
Affiliation(s)
- Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Baseline brain structural and functional predictors of clinical outcome in the early course of schizophrenia. Mol Psychiatry 2018; 25:863-872. [PMID: 30283030 PMCID: PMC6447492 DOI: 10.1038/s41380-018-0269-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022]
Abstract
Although schizophrenia is considered a brain disorder, the role of brain organization for symptomatic improvement remains inadequately defined. We investigated the relationship between baseline brain morphology, resting-state network connectivity and clinical response after 24-weeks of antipsychotic treatment in patients with schizophrenia (n = 95) using integrated multivariate analyses. There was no significant association between clinical response and measures of cortical thickness (r = 0.37, p = 0.98) and subcortical volume (r = 0.56, p = 0.15). By contrast, we identified a strong mode of covariation linking functional network connectivity to clinical response (r = 0.70; p = 0.04), and particularly to improvement in positive (weight = 0.62) and anxious/depressive symptoms (weight = 0.49). Higher internal cohesiveness of the default mode network was the single most important positive predictor. Key negative predictors involved the functional cohesiveness of central executive subnetworks anchored in the frontoparietal cortices and subcortical regions (including the thalamus and striatum) and the inter-network integration between the default mode and sensorimotor networks. The present findings establish links between clinical response and the functional organization of brain networks involved both in perception and in spontaneous and goal-directed cognition, thereby advancing our understanding of the pathophysiology of schizophrenia.
Collapse
|
6
|
Li Q, Wineinger NE, Fu DJ, Libiger O, Alphs L, Savitz A, Gopal S, Cohen N, Schork NJ. Genome-wide association study of paliperidone efficacy. Pharmacogenet Genomics 2017; 27:7-18. [PMID: 27846195 PMCID: PMC5152628 DOI: 10.1097/fpc.0000000000000250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Supplemental Digital Content is available in the text. Objective Clinical response to the atypical antipsychotic paliperidone is known to vary among schizophrenic patients. We carried out a genome-wide association study to identify common genetic variants predictive of paliperidone efficacy. Methods We leveraged a collection of 1390 samples from individuals of European ancestry enrolled in 12 clinical studies investigating the efficacy of the extended-release tablet paliperidone ER (n1=490) and the once-monthly injection paliperidone palmitate (n2=550 and n3=350). We carried out a genome-wide association study using a general linear model (GLM) analysis on three separate cohorts, followed by meta-analysis and using a mixed linear model analysis on all samples. The variations in response explained by each single nucleotide polymorphism (h2SNP) were estimated. Results No SNP passed genome-wide significance in the GLM-based analyses with suggestive signals from rs56240334 [P=7.97×10−8 for change in the Clinical Global Impression Scale-Severity (CGI-S); P=8.72×10−7 for change in the total Positive and Negative Syndrome Scale (PANSS)] in the intron of ADCK1. The mixed linear model-based association P-values for rs56240334 were consistent with the results from GLM-based analyses and the association with change in CGI-S (P=4.26×10−8) reached genome-wide significance (i.e. P<5×10−8). We also found suggestive evidence for a polygenic contribution toward paliperidone treatment response with estimates of heritability, h2SNP, ranging from 0.31 to 0.43 for change in the total PANSS score, the PANSS positive Marder factor score, and CGI-S. Conclusion Genetic variations in the ADCK1 gene may differentially predict paliperidone efficacy in schizophrenic patients. However, this finding should be replicated in additional samples.
Collapse
Affiliation(s)
- Qingqin Li
- aNeuroscience, Janssen Research & Development, LLC bJanssen Scientific Affairs, LLC, Titusville cJanssen Research & Development, LLC, Raritan dBlue Note Biosciences, LLC, Princeton, New Jersey eBiostatistics and Bioinformatics, The Scripps Translational Science Institute fDepartment of Molecular and Experimental Medicine, The Scripps Research Institute gScripps Health hHuman Biology, J. Craig Venter Institute, La Jolla iMD Revolution, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Radoeva PD, Bansal R, Antshel KM, Fremont W, Peterson BS, Kates WR. Longitudinal study of cerebral surface morphology in youth with 22q11.2 deletion syndrome, and association with positive symptoms of psychosis. J Child Psychol Psychiatry 2017; 58:305-314. [PMID: 27786353 PMCID: PMC5340081 DOI: 10.1111/jcpp.12657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11DS) is a genetic disorder that greatly increases risk of developing schizophrenia. We previously characterized cerebral surface morphology trajectories from late childhood to mid adolescence in a cohort of youth with 22q11DS. Herein, we extend the study period into early adulthood, and describe further the trajectories associated with severe psychiatric symptoms in this cohort. METHODS Participants included 76 youth with 22q11DS and 30 unaffected siblings, assessed at three timepoints, during which high resolution, anatomic magnetic resonance images were acquired. High-dimensional, nonlinear warping algorithms were applied to images in order to derive characteristics of cerebral surface morphology for each participant at each timepoint. Repeated-measures, linear regressions using a mixed model were conducted, while covarying for age and sex. RESULTS Alterations in cerebral surface morphology during late adolescence/early adulthood in individuals with 22q11DS were observed in the lateral frontal, orbitofrontal, temporal, parietal, occipital, and cerebellar regions. An Age x Diagnosis interaction revealed that relative to unaffected siblings, individuals with 22q11DS showed age-related surface protrusions in the prefrontal cortex (which remained stable or increased during early adulthood), and surface indentations in posterior regions (which seemed to level off during late adolescence). Symptoms of psychosis were associated with a trajectory of surface indentations in the orbitofrontal and parietal regions. CONCLUSIONS These results advance our understanding of cerebral maturation in individuals with 22q11DS, and provide clinically relevant information about the psychiatric phenotype associated with the longitudinal trajectory of cortical surface morphology in youth with this genetic syndrome.
Collapse
Affiliation(s)
- Petya D. Radoeva
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ravi Bansal
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Kevin M. Antshel
- Department of Psychology, Syracuse University, Syracuse, New York, USA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bradley S. Peterson
- Children’s Hospital Los Angeles and the Keck School of Medicine at the University of Southern California, Los Angeles, California, USA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
8
|
Ikuta T, DeRosse P, Argyelan M, Karlsgodt KH, Kingsley PB, Szeszko PR, Malhotra AK. Subcortical modulation in auditory processing and auditory hallucinations. Behav Brain Res 2015; 295:78-81. [PMID: 26275927 DOI: 10.1016/j.bbr.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022]
Abstract
Hearing perception in individuals with auditory hallucinations has not been well studied. Auditory hallucinations have previously been shown to involve primary auditory cortex activation. This activation suggests that auditory hallucinations activate the terminal of the auditory pathway as if auditory signals are submitted from the cochlea, and that a hallucinatory event is therefore perceived as hearing. The primary auditory cortex is stimulated by some unknown source that is outside of the auditory pathway. The current study aimed to assess the outcomes of stimulating the primary auditory cortex through the auditory pathway in individuals who have experienced auditory hallucinations. Sixteen patients with schizophrenia underwent functional magnetic resonance imaging (fMRI) sessions, as well as hallucination assessments. During the fMRI session, auditory stimuli were presented in one-second intervals at times when scanner noise was absent. Participants listened to auditory stimuli of sine waves (SW) (4-5.5kHz), English words (EW), and acoustically reversed English words (arEW) in a block design fashion. The arEW were employed to deliver the sound of a human voice with minimal linguistic components. Patients' auditory hallucination severity was assessed by the auditory hallucination item of the Brief Psychiatric Rating Scale (BPRS). During perception of arEW when compared with perception of SW, bilateral activation of the globus pallidus correlated with severity of auditory hallucinations. EW when compared with arEW did not correlate with auditory hallucination severity. Our findings suggest that the sensitivity of the globus pallidus to the human voice is associated with the severity of auditory hallucination.
Collapse
Affiliation(s)
- Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, University, MS 38677, USA.
| | - Pamela DeRosse
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Division of Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, 11004, USA
| | - Miklos Argyelan
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Division of Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, 11004, USA
| | - Katherine H Karlsgodt
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Division of Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, 11004, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Peter B Kingsley
- Department of Radiology, North Shore University Hospital, Manhasset, NY, 11030, USA
| | - Philip R Szeszko
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Division of Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, 11004, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Anil K Malhotra
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA; Division of Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY, 11004, USA; Hofstra North Shore-LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| |
Collapse
|
9
|
Dazzan P. Neuroimaging biomarkers to predict treatment response in schizophrenia: the end of 30 years of solitude? DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25733954 PMCID: PMC4336919 DOI: 10.31887/dcns.2014.16.4/pdazzan] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies that have used structural magnetic resonance imaging (MRI) suggest that individuals with psychoses have brain alterations, particularly in frontal and temporal cortices, and in the white matter tracts that connect them. Furthermore, these studies suggest that brain alterations may be particularly prominent, already at illness onset, in those individuals more likely to have poorer outcomes (eg, higher number of hospital admissions, and poorer symptom remission, level of functioning, and response to the first treatment with antipsychotic drugs). The fact that, even when present, these brain alterations are subtle and distributed in nature, has limited, until now, the utility of MRI in the clinical management of these disorders. More recently, MRI approaches, such as machine learning, have suggested that these neuroanatomical biomarkers can be used for direct clinical benefits. For example, using support vector machine, MRI data obtained at illness onset have been used to predict, with significant accuracy, whether a specific individual is likely to experience a remission of symptoms later on in the course of the illness. Taken together, this evidence suggests that validated, strong neuroanatomical markers could be used not only to inform tailored intervention strategies in a single individual, but also to allow patient stratification in clinical trials for new treatments.
Collapse
Affiliation(s)
- Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK; National Institute for Health Research, Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Kent JS, Bolbecker AR, O'Donnell BF, Hetrick WP. Eyeblink Conditioning in Schizophrenia: A Critical Review. Front Psychiatry 2015; 6:146. [PMID: 26733890 PMCID: PMC4683521 DOI: 10.3389/fpsyt.2015.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
There is accruing evidence of cerebellar abnormalities in schizophrenia. The theory of cognitive dysmetria considers cerebellar dysfunction a key component of schizophrenia. Delay eyeblink conditioning (EBC), a cerebellar-dependent translational probe, is a behavioral index of cerebellar integrity. The circuitry underlying EBC has been well characterized by non-human animal research, revealing the cerebellum as the essential circuitry for the associative learning instantiated by this task. However, there have been persistent inconsistencies in EBC findings in schizophrenia. This article thoroughly reviews published studies investigating EBC in schizophrenia, with an emphasis on possible effects of antipsychotic medication and stimulus and analysis parameters on reports of EBC performance in schizophrenia. Results indicate a consistent finding of impaired EBC performance in schizophrenia, as measured by decreased rates of conditioning, and that medication or study design confounds do not account for this impairment. Results are discussed within the context of theoretical and neurochemical models of schizophrenia.
Collapse
Affiliation(s)
- Jerillyn S Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Amanda R Bolbecker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - Brian F O'Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Larue D. Carter Memorial Hospital, Indianapolis, IN, USA
| |
Collapse
|
11
|
Bolbecker AR, Kent JS, Petersen IT, Klaunig MJ, Forsyth JK, Howell JM, Westfall DR, O’Donnell BF, Hetrick WP. Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives of individuals with schizophrenia. Schizophr Bull 2014; 40:1001-10. [PMID: 23962891 PMCID: PMC4133656 DOI: 10.1093/schbul/sbt112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consistent with reports of cerebellar structural, functional, and neurochemical anomalies in schizophrenia, robust cerebellar-dependent delay eyeblink conditioning (dEBC) deficits have been observed in the disorder. Impaired dEBC is also present in schizotypal personality disorder, an intermediate phenotype of schizophrenia. The present work sought to determine whether dEBC deficits exist in nonpsychotic first-degree relatives of individuals with schizophrenia. A single-cue tone dEBC paradigm consisting of 10 blocks with 10 trials each (9 paired and 1 unpaired trials) was used to examine the functional integrity of cerebellar circuitry in schizophrenia participants, individuals with a first-degree relative diagnosed with schizophrenia, and healthy controls with no first-degree relatives diagnosed with schizophrenia. The conditioned stimulus (a 400ms tone) coterminated with the unconditioned stimulus (a 50ms air puff to the left eye) on paired trials. One relative and 2 healthy controls were removed from further analysis due to declining conditioned response rates, leaving 18 schizophrenia participants, 17 first-degree relatives, and 16 healthy controls. Electromyographic data were subsequently analyzed using growth curve models in hierarchical linear regression. Acquisition of dEBC conditioned responses was significantly impaired in schizophrenia and first-degree relative groups compared with controls. This finding that cerebellar-mediated associative learning deficits are present in first-degree relatives of individuals with schizophrenia provides evidence that dEBC abnormalities in schizophrenia may not be due to medication or course of illness effects. Instead, the present results are consistent with models of schizophrenia positing cerebellar-cortical circuit abnormalities and suggest that cerebellar abnormalities represent a risk marker for the disorder.
Collapse
Affiliation(s)
| | - Jerillyn S. Kent
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Isaac T. Petersen
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | | | | | | | | | - William P. Hetrick
- *To whom correspondence should be addressed; Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405, US; tel: 812-855-2620, fax: 812-856-4544, e-mail:
| |
Collapse
|
12
|
Patients with poor response to antipsychotics have a more severe pattern of frontal atrophy: a voxel-based morphometry study of treatment resistance in schizophrenia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:325052. [PMID: 25157354 PMCID: PMC4135095 DOI: 10.1155/2014/325052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/20/2014] [Accepted: 07/11/2014] [Indexed: 01/08/2023]
Abstract
Approximately 30% of schizophrenia patients do not respond adequately to the therapy. Previous MRI studies have suggested that drug treatment resistance is associated with brain morphological abnormalities, although region-of-interest analysis of MR studies from nonresponder and responder patients failed to demonstrate a statistically significant difference between these two schizophrenia subgroups. We have used a voxel-based analysis of segmented MR studies to assess structural cerebral differences in 20 nonresponder and 15 responder patients and 16 age-matched normal volunteers. Differences between the three groups emerged bilaterally mainly at the level of the superior and middle frontal gyri, primarily due to reduced grey matter volumes in nonresponders, as compared to both normal volunteers and responder patients. Post hoc direct comparison between the two schizophrenia subgroups demonstrated significantly reduced grey matter volumes in middle frontal gyrus bilaterally, in the dorsolateral aspects of left superior frontal gyrus extending into postcentral gyrus and in the right medial temporal cortex. Our results extend and integrate previous findings suggesting a more severe atrophy in nonresponder schizophrenia patients, compared to responder patients, mainly at the level of the superior and middle frontal gyri. Longitudinal studies in drug-naïve patients are needed to assess the role of these associations.
Collapse
|
13
|
Bolbecker AR, Westfall DR, Howell JM, Lackner RJ, Carroll CA, O'Donnell BF, Hetrick WP. Increased timing variability in schizophrenia and bipolar disorder. PLoS One 2014; 9:e97964. [PMID: 24848559 PMCID: PMC4029800 DOI: 10.1371/journal.pone.0097964] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/27/2014] [Indexed: 01/08/2023] Open
Abstract
Theoretical and empirical evidence suggests that impaired time perception and the neural circuitry underlying internal timing mechanisms may contribute to severe psychiatric disorders, including psychotic and mood disorders. The degree to which alterations in temporal perceptions reflect deficits that exist across psychosis-related phenotypes and the extent to which mood symptoms contribute to these deficits is currently unknown. In addition, compared to schizophrenia, where timing deficits have been more extensively investigated, sub-second timing has been studied relatively infrequently in bipolar disorder. The present study compared sub-second duration estimates of schizophrenia (SZ), schizoaffective disorder (SA), non-psychotic bipolar disorder (BDNP), bipolar disorder with psychotic features (BDP), and healthy non-psychiatric controls (HC) on a well-established time perception task using sub-second durations. Participants included 66 SZ, 37 BDNP, 34 BDP, 31 SA, and 73 HC who participated in a temporal bisection task that required temporal judgements about auditory durations ranging from 300 to 600 milliseconds. Timing variability was significantly higher in SZ, BDP, and BDNP groups compared to healthy controls. The bisection point did not differ across groups. These findings suggest that both psychotic and mood symptoms may be associated with disruptions in internal timing mechanisms. Yet unexpected findings emerged. Specifically, the BDNP group had significantly increased variability compared to controls, but the SA group did not. In addition, these deficits appeared to exist independent of current symptom status. The absence of between group differences in bisection point suggests that increased variability in the SZ and bipolar disorder groups are due to alterations in perceptual timing in the sub-second range, possibly mediated by the cerebellum, rather than cognitive deficits.
Collapse
Affiliation(s)
- Amanda R. Bolbecker
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Daniel R. Westfall
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Josselyn M. Howell
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - Ryan J. Lackner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Christine A. Carroll
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Brian F. O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
| | - William P. Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Larue D. Carter Memorial Hospital, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
14
|
(1)H-magnetic resonance spectroscopy ((1)H-MRS) in methamphetamine dependence and methamphetamine induced psychosis. Schizophr Res 2014; 153:122-8. [PMID: 24529366 DOI: 10.1016/j.schres.2014.01.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/12/2013] [Accepted: 01/16/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Methamphetamine (MA) use has been shown to decrease n-acetyl-aspartate (NAA), a marker of neuronal integrity and viability, on (1)H magnetic resonance spectroscopy ((1)H-MRS). However, little work has compared (1)H-MRS in MA dependent individuals and MA dependent individuals with MA induced psychotic disorder (MAP). METHODS Twenty six participants with MA dependence (sixteen without psychosis, ten with psychosis - MAP) and nineteen healthy controls underwent 2D-chemical shift imaging (1)H-MRS, which included voxels in the anterior cingulate cortices (ACC), dorsolateral prefrontal cortices (DLPFC), and frontal white matter. We compared metabolite concentrations relative to phosphocreatine+creatine (PCr+Cr) for n-acetyl-aspartate (NAA), n-acetyl-aspartate+n-acetyl-aspartyl-glutamate (NAA+NAAG), glutamate (Glu), glutamate+glutamine (Glu+Gln), myo-inositol, and glycerophosphocholine+phosphocholine (GPC+PCh) across groups. RESULTS The MA groups showed significantly decreased relative NAA metabolite concentrations for right ACC and right DLPFC, compared with control group. The MA dependent group only showed significantly decreased choline metabolites for right DLPFC, compared with control group. The MAP group's relative NAA metabolite concentrations were significantly correlated with age of initial use and duration of MA use, these correlates were not apparent in MA dependent group. CONCLUSION MA use is associated with decreased neuronal integrity and viability, specifically in the right ACC and right DLPFC. MA dependence showed active neurodegeneration in the right DLPFC, this was not apparent in the MAP group and may be related to the use of antipsychotic medication in the MAP group. The effects of MA use in MAP suggest that age of initial use presents a mismatch of neuronal plasticity, in frontal white vs. gray matter and duration of use relates to decreased neuronal integrity and viability. Further study is warranted from this initial study of (1)H-MRS in MAP, in particular longitudinal assessment of these individuals both neurobiologically ((1)H-MRS) and clinically - to determine disease progression.
Collapse
|
15
|
Hutcheson NL, Clark DG, Bolding MS, White DM, Lahti AC. Basal ganglia volume in unmedicated patients with schizophrenia is associated with treatment response to antipsychotic medication. Psychiatry Res 2014; 221:6-12. [PMID: 24210948 PMCID: PMC3947916 DOI: 10.1016/j.pscychresns.2013.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/31/2013] [Accepted: 10/16/2013] [Indexed: 02/08/2023]
Abstract
We investigated the relationship between basal ganglia volume and treatment response to the atypical antipsychotic medication risperidone in unmedicated patients with schizophrenia. Basal ganglia volumes included the bilateral caudate, putamen, and pallidum and were measured using the Freesurfer automated segmentation pipeline in 23 subjects. Also, baseline symptom severity, duration of illness, age, gender, time off medication, and exposure to previous antipsychotic were measured. Treatment response was significantly correlated with all three regions of the bilateral basal ganglia (caudate, putamen, and pallidum), baseline symptom severity, duration of illness, and age but not gender, time off antipsychotic medication, or exposure to previous antipsychotic medication. The caudate volume was the basal ganglia region that demonstrated the strongest correlation with treatment response and was significantly negatively correlated with patient age. Caudate volume was not significantly correlated with any other measure. We demonstrated a novel finding that the caudate volume explains a significant amount of the variance in treatment response over the course of 6 weeks of risperidone pharmacotherapy even when controlling for baseline symptom severity and duration of illness.
Collapse
Affiliation(s)
- Nathan L. Hutcheson
- Department of Graduate Biomedical Sciences, Neuroscience, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David G. Clark
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL
| | - Mark S. Bolding
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL,Department of Vision Sciences, The University of Alabama at Birmingham, Birmingham, AL. USA
| | - David M. White
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C. Lahti
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA,Corresponding author. Tel.: +1 205 996 6776; fax: +1 205 975 4879.
| |
Collapse
|
16
|
Torres US, Portela-Oliveira E, Borgwardt S, Busatto GF. Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis. BMC Psychiatry 2013; 13:342. [PMID: 24359128 PMCID: PMC3878502 DOI: 10.1186/1471-244x-13-342] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The results of multiple studies on the association between antipsychotic use and structural brain changes in schizophrenia have been assessed only in qualitative literature reviews to date. We aimed to perform a meta-analysis of voxel-based morphometry (VBM) studies on this association to quantitatively synthesize the findings of these studies. METHODS A systematic computerized literature search was carried out through MEDLINE/PubMed, EMBASE, ISI Web of Science, SCOPUS and PsycINFO databases aiming to identify all VBM studies addressing this question and meeting predetermined inclusion criteria. All studies reporting coordinates representing foci of structural brain changes associated with antipsychotic use were meta-analyzed by using the activation likelihood estimation technique, currently the most sophisticated and best-validated tool for voxel-wise meta-analysis of neuroimaging studies. RESULTS Ten studies (five cross-sectional and five longitudinal) met the inclusion criteria and comprised a total of 548 individuals (298 patients on antipsychotic drugs and 250 controls). Depending on the methodologies of the selected studies, the control groups included healthy subjects, drug-free patients, or the same patients evaluated repeatedly in longitudinal comparisons (i.e., serving as their own controls). A total of 102 foci associated with structural alterations were retrieved. The meta-analysis revealed seven clusters of areas with consistent structural brain changes in patients on antipsychotics compared to controls. The seven clusters included four areas of relative volumetric decrease in the left lateral temporal cortex [Brodmann area (BA) 20], left inferior frontal gyrus (BA 44), superior frontal gyrus extending to the left middle frontal gyrus (BA 6), and right rectal gyrus (BA 11), and three areas of relative volumetric increase in the left dorsal anterior cingulate cortex (BA 24), left ventral anterior cingulate cortex (BA 24) and right putamen. CONCLUSIONS Our results identify the specific brain regions where possible associations between antipsychotic drug usage and structural brain changes in schizophrenia patients are more consistently reported. Additional longitudinal VBM studies including larger and more homogeneous samples of schizophrenia patients may be needed to further disentangle such alterations from those possibly linked to the intrinsic pathological progressive process in schizophrenia.
Collapse
Affiliation(s)
- Ulysses S Torres
- Post-Graduate Program in Radiology, Institute of Radiology (INRAD), University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | - Eduardo Portela-Oliveira
- Department of Radiology, Hospital de Base, São José do Rio Preto Medical School, Sao Paulo, Brazil
| | - Stefan Borgwardt
- Department of Psychiatry, University of Basel, Basel, Switzerland,Department of Psychosis Studies, Institute of Psychiatry, King’s College, London, UK
| | - Geraldo F Busatto
- Post-Graduate Program in Radiology, Institute of Radiology (INRAD), University of Sao Paulo Medical School, Sao Paulo, Brazil,Laboratory of Neuroimaging in Psychiatry (LIM-21), Institute of Psychiatry, University of Sao Paulo Medical School, Centro de Medicina Nuclear, 3º andar, Rua Dr. Ovídio Pires Campos, s/n, Sao Paulo, Sao Paulo, 05403-010, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Abstract
The current schizophrenia concept is built on experts' agreement on the matter, and it is basically rooted in the epidemiological and clinical evidence. However, the numerous and intensive attempts to find the biological underpinnings of this syndrome face almost constantly a low degree of replication of the results. We have reviewed previously published work to contribute to identify some reasons underlying that failure. The difficulty in replicating biological findings in schizophrenia may relate to the intrinsic heterogeneity among patient samples, acquired through the current diagnostic criteria. As a result, the necessary replication for any finding to be accepted as characteristic data for schizophrenia would be impeded. Therefore, a new frame based on identification of correlates of the most replicated biological anomalies in schizophrenia to date may contribute to overcome those difficulties.
Collapse
|
18
|
|
19
|
Achievement and maintenance of the new impact factor 2010. Eur Arch Psychiatry Clin Neurosci 2011; 261:387-9. [PMID: 21861244 PMCID: PMC3159768 DOI: 10.1007/s00406-011-0237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|