1
|
Dusi N, Esposito CM, Delvecchio G, Prunas C, Brambilla P. Case report and systematic review of cerebellar vermis alterations in psychosis. Int Clin Psychopharmacol 2024; 39:223-231. [PMID: 38266159 PMCID: PMC11136271 DOI: 10.1097/yic.0000000000000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Cerebellar alterations, including both volumetric changes in the cerebellar vermis and dysfunctions of the corticocerebellar connections, have been documented in psychotic disorders. Starting from the clinical observation of a bipolar patient with cerebellar hypoplasia, the purpose of this review is to summarize the data in the literature about the association between hypoplasia of the cerebellar vermis and psychotic disorders [schizophrenia (SCZ) and bipolar disorder (BD)]. METHODS A bibliographic search on PubMed has been conducted, and 18 articles were finally included in the review: five used patients with BD, 12 patients with SCZ and one subject at psychotic risk. RESULTS For SCZ patients and subjects at psychotic risk, the results of most of the reviewed studies seem to suggest a gray matter volume reduction coupled with an increase in white matter volumes in the cerebellar vermis, compared to healthy controls. Instead, the results of the studies on BD patients are more heterogeneous with evidence showing a reduction, no difference or even an increase in cerebellar vermis volume compared to healthy controls. CONCLUSIONS From the results of the reviewed studies, a possible correlation emerged between cerebellar vermis hypoplasia and psychotic disorders, especially SCZ, ultimately supporting the hypothesis of psychotic disorders as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nicola Dusi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | | | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
- Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Chen G, Wang J, Gong J, Qi Z, Fu S, Tang G, Chen P, Huang L, Wang Y. Functional and structural brain differences in bipolar disorder: a multimodal meta-analysis of neuroimaging studies. Psychol Med 2022; 52:2861-2873. [PMID: 36093787 DOI: 10.1017/s0033291722002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Numerous studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed differences in specific brain regions of patients with bipolar disorder (BD), but the results have been inconsistent. METHODS A whole-brain voxel-wise meta-analysis was conducted on resting-state functional imaging and VBM studies that compared differences between patients with BD and healthy controls using Seed-based d Mapping with Permutation of Subject Images software. RESULTS A systematic literature search identified 51 functional imaging studies (1842 BD and 2190 controls) and 83 VBM studies (2790 BD and 3690 controls). Overall, patients with BD displayed increased resting-state functional activity in the left middle frontal gyrus, right inferior frontal gyrus (IFG) extending to the right insula, right superior frontal gyrus and bilateral striatum, as well as decreased resting-state functional activity in the left middle temporal gyrus extending to the left superior temporal gyrus and post-central gyrus, left cerebellum, and bilateral precuneus. The meta-analysis of VBM showed that patients with BD displayed decreased VBM in the right IFG extending to the right insula, temporal pole and superior temporal gyrus, left superior temporal gyrus extending to the left insula, temporal pole, and IFG, anterior cingulate cortex, left superior frontal gyrus (medial prefrontal cortex), left thalamus, and right fusiform gyrus. CONCLUSIONS The multimodal meta-analyses suggested that BD showed similar patterns of aberrant brain activity and structure in the insula extending to the temporal cortex, fronto-striatal-thalamic, and default-mode network regions, which provide useful insights for understanding the underlying pathophysiology of BD.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, 510006, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
- Department of Radiology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
3
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Brain morphology does not clearly map to cognition in individuals on the bipolar-schizophrenia-spectrum: a cross-diagnostic study of cognitive subgroups. J Affect Disord 2021; 281:776-785. [PMID: 33246649 DOI: 10.1016/j.jad.2020.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Characterisation of brain morphological features common to cognitively similar individuals with bipolar disorder (BD) and schizophrenia spectrum disorders (SSD) may be key to understanding their shared neurobiological deficits. In the current study we examined whether three previously characterised cross-diagnostic cognitive subgroups differed among themselves and in comparison to healthy controls across measures of brain morphology. METHOD T1-weighted structural magnetic resonance imaging scans were obtained for 143 individuals; 65 healthy controls and 78 patients (SSD, n = 40; BD I, n = 38) classified into three cross-diagnostic cognitive subgroups: Globally Impaired (n = 24), Selectively Impaired (n = 32), and Superior/Near-Normal (n = 22). Cognitive subgroups were compared to each other and healthy controls on three separate analyses investigating (1) global, (2) regional, and (3) vertex-wise comparisons of brain volume, thickness, and surface area. RESULTS No significant subgroup differences were evident in global measures of brain morphology. In region of interest analyses, the Selectively Impaired subgroup had greater right accumbens volume than those Superior/Near-Normal subgroup and healthy controls, and the Superior/Near-Normal subgroup had reduced volume of the left entorhinal region compared to all other groups. In vertex-wise comparisons, the Globally Impaired subgroup had greater right precentral volume than the Selectively Impaired subgroup, and thicker cortex in the postcentral region relative to the Superior/Near-Normal subgroup. LIMITATIONS Exploration of medication effects was limited in our data. CONCLUSIONS Although some differences were evident in this sample, generally cross-diagnostic cognitive subgroups of individuals with SSD and BD did not appear to be clearly distinguished by patterns in brain morphology.
Collapse
|
5
|
Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2020; 270:841-850. [PMID: 32060609 DOI: 10.1007/s00406-020-01108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
There is increasing evidence to support the notion that oligodendrocyte and myelin abnormalities may contribute to the functional dysconnectivity found in the major psychiatric disorders. The putamen, which is an important hub in the cortico-striato-thalamo-cortical loop, has been implicated in a broad spectrum of psychiatric illnesses and is a central target of their treatments. Previously we reported a reduction in the numerical density of oligodendrocytes and oligodendrocyte clusters in the prefrontal and parietal cortex in schizophrenia. Oligodendrocyte clusters contain oligodendrocyte progenitors and are involved in functionally dependent myelination. We measured the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters in the putamen in schizophrenia, bipolar disorder (BPD) and major depressive disorder (MDD) as compared to healthy controls (15 cases per group). Optical disector was used to estimate the Nv of oligodendrocytes and oligodendrocyte clusters. A significant reduction in both the Nv of oligodendrocytes (- 34%; p < 0.01) and the Nv of oligodendrocyte clusters (- 41%; p < 0.05) was found in the schizophrenia group as compared to the control group. Sexual dimorphism for both measurements was found only within the control group. The Nv of oligodendrocytes was significantly lower in male schizophrenia cases as compared to the male control cases. However, the Nv of oligodendrocyte clusters was significantly lower in all male clinical cases as compared to the male control group. The data suggest that lowered density of oligodendrocytes and oligodendrocyte clusters may contribute to the altered functional connectivity in the putamen in subjects with schizophrenia.
Collapse
|
6
|
Sun N, Li Y, Zhang A, Yang C, Liu P, Liu Z, Wang Y, Jin R, Zhang K. Fractional amplitude of low-frequency fluctuations and gray matter volume alterations in patients with bipolar depression. Neurosci Lett 2020; 730:135030. [PMID: 32389612 DOI: 10.1016/j.neulet.2020.135030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE We used fractional amplitude of low-frequency fluctuations (fALFF) and gray matter volume (GMV) jointly to explore the mechanism of brain function and structure in unmedicated patients with bipolar disorder (BD). METHODS Thirty first episode drug-naive patients with and thirty healthy controls (HCs) were recruited in this study; All the subjects underwent Magnetic Resonance Imaging (MRI) scanning and performed the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), all the patients with MDD finished the 17-item Hamilton Depression Rating Scale (HAMD17). Data Processing and Analysis for Brain Imaging (DPABI) and SPM8 were used to find potential differences in fALFF and GMV between the two groups. A Pearson correlation model was used to analyze associations of functional and morphometric changes with clinical symptoms and cognitive tests. RESULTS Compared to healthy controls, the BD group had significantly reduced fALFF values in the lingual gyrus and increased fALFF values in the bilateral superior frontal gyrus and superior frontal gyrus. With regards to VBM, patients with BD showed significant GMV decreases in the bilateral superior temporal gyrus, bilateral superior frontal gyrus, right superior frontal gyrus, right parahippocampal gyrus and precuneus. Additionally, we found an overlap of brain regions focused on the left SFG. Significant negative correlations were observed between abnormal GMV values in the left SFG and vocabulary memory. CONCLUSION The superior frontal gyrus was the site of the most robust and reliable abnormality, with an overlap of abnormal structural and functional MRI features that play an important role in pathology in BD.
Collapse
Affiliation(s)
- Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China; Nursing College of Shanxi Medical University, Taiyuan, China
| | - Yening Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruihua Jin
- Nursing College of Shanxi Medical University, Taiyuan, China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
7
|
Lee DK, Lee H, Park K, Joh E, Kim CE, Ryu S. Common gray and white matter abnormalities in schizophrenia and bipolar disorder. PLoS One 2020; 15:e0232826. [PMID: 32379845 PMCID: PMC7205291 DOI: 10.1371/journal.pone.0232826] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate abnormalities in the gray matter and white matter (GM and WM, respectively) that are shared between schizophrenia (SZ) and bipolar disorder (BD). We used 3T-magnetic resonance imaging to examine patients with SZ, BD, or healthy control (HC) subjects (aged 20–50 years, N = 65 in each group). We generated modulated GM maps through voxel-based morphometry (VBM) for T1-weighted images and skeletonized fractional anisotropy, mean diffusion, and radial diffusivity maps through tract-based special statistics (TBSS) methods for diffusion tensor imaging (DTI) data. These data were analyzed using a generalized linear model with pairwise comparisons between groups with a family-wise error corrected P < 0.017. The VBM analysis revealed widespread decreases in GM volume in SZ compared to HC, but patients with BD showed GM volume deficits limited to the right thalamus and left insular lobe. The TBSS analysis showed alterations of DTI parameters in widespread WM tracts both in SZ and BD patients compared to HC. The two disorders had WM alterations in the corpus callosum, superior longitudinal fasciculus, internal capsule, external capsule, posterior thalamic radiation, and fornix. However, we observed no differences in GM volume or WM integrity between SZ and BD. The study results suggest that GM volume deficits in the thalamus and insular lobe along with widespread disruptions of WM integrity might be the common neural mechanisms underlying the pathologies of SZ and BD.
Collapse
Affiliation(s)
- Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Kyeongwoo Park
- Department of Clinical Psychology, National Center for Mental Health, Seoul, Republic of Korea
| | - Euwon Joh
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Chul-Eung Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
8
|
Gong J, Wang J, Luo X, Chen G, Huang H, Huang R, Huang L, Wang Y. Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI. J Psychiatry Neurosci 2020; 45:55-68. [PMID: 31580042 PMCID: PMC6919918 DOI: 10.1503/jpn.180245] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resting-state functional MRI (fMRI) studies have provided much evidence for abnormal intrinsic brain activity in schizophrenia, but results have been inconsistent. METHODS We conducted a meta-analysis of whole-brain, resting-state fMRI studies that explored differences in amplitude of low-frequency fluctuation (ALFF) between people with schizophrenia (including first episode and chronic) and healthy controls. RESULTS A systematic literature search identified 24 studies comparing a total of 1249 people with schizophrenia and 1179 healthy controls. Overall, patients with schizophrenia displayed decreased ALFF in the bilateral postcentral gyrus, bilateral precuneus, left inferior parietal gyri and right occipital lobe, and increased ALFF in the right putamen, right inferior frontal gyrus, left inferior temporal gyrus and right anterior cingulate cortex. In the subgroup analysis, patients with first-episode schizophrenia demonstrated decreased ALFF in the bilateral inferior parietal gyri, right precuneus and left medial prefrontal cortex, and increased ALFF in the bilateral putamen and bilateral occipital gyrus. Patients with chronic schizophrenia showed decreased ALFF in the bilateral postcentral gyrus, left precuneus and right occipital gyrus, and increased ALFF in the bilateral inferior frontal gyri, bilateral superior frontal gyrus, left amygdala, left inferior temporal gyrus, right anterior cingulate cortex and left insula. LIMITATIONS The small sample size of our subgroup analysis, predominantly Asian samples, processing steps and publication bias could have limited the accuracy of the results. CONCLUSION Our comprehensive meta-analysis suggests that findings of aberrant regional intrinsic brain activity during the initial stages of schizophrenia, and much more widespread damage with the progression of disease, may contribute to our understanding of the progressive pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jiaying Gong
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Junjing Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Xiaomei Luo
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Guanmao Chen
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Huiyuan Huang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Ruiwang Huang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Li Huang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| | - Ying Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou China (Gong, Luo, Chen, Huang, Wang); the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (Wang); the School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou China (Huang, Huang)
| |
Collapse
|
9
|
Zou Y, Ni K, Wang Y, Yu E, Lui SSY, Zhou F, Yang H, Cohen AS, Strauss GP, Cheung EFC, Chan RCK. Effort–cost computation in a transdiagnostic psychiatric sample: Differences among patients with schizophrenia, bipolar disorder, and major depressive disorder. Psych J 2019; 9:210-222. [PMID: 31692266 DOI: 10.1002/pchj.316] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ying‐Min Zou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Ke Ni
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Qiqihar Psychiatry Hospital Heilongjiang China
| | - Yan‐Yu Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
- Department of PsychologyWeifang Medical University Weifang China
| | - En‐Qing Yu
- Qiqihar Psychiatry Hospital Heilongjiang China
| | - Simon S. Y. Lui
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Castle Peak Hospital Hong Kong China
| | - Fu‐Chun Zhou
- Beijing Key Laboratory of Mental DisordersBeijing Anding Hospital, Capital Medical University Beijing China
| | - Han‐Xue Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| | - Alex S. Cohen
- Department of PsychologyLouisiana State University Baton Rouge Louisiana USA
| | | | | | - Raymond C. K. Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental HealthInstitute of Psychology Beijing China
- Department of PsychologyUniversity of Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Delvecchio G, Ciappolino V, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Cingulate abnormalities in bipolar disorder relate to gender and outcome: a region-based morphometry study [corrected]. Eur Arch Psychiatry Clin Neurosci 2019; 269:777-784. [PMID: 29594394 DOI: 10.1007/s00406-018-0887-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
Abstract
Structural magnetic resonance imaging (MRI) studies reported gray matter (GM) loss in bipolar disorder (BD) in cingulate cortices, key regions subserving emotional regulation and cognitive functions in humans. The aim of this study was to further explore cingulate GM volumes in a sizeable group of BD patients with respect to healthy controls, particularly investigating the impact of gender and clinical variables. 39 BD patients (mean Age = 48.6 ± 9.7, 15 males and 24 females) and 39 demographically matched healthy subjects (mean Age = 47.9 ± 9.1, 15 males and 24 females) underwent a 1.5T MRI scan. GM volumes within the cingulate cortex were manually detected, including anterior and posterior regions. BD patients had decreased left anterior cingulate volumes compared with healthy controls (F = 6.7, p = 0.01). Additionally, a significant gender effect was observed, with male patients showing reduced left anterior cingulate cortex (ACC) volumes compared to healthy controls (F = 5.1, p = 0.03). Furthermore, a significant inverse correlation between right ACC volumes and number of hospitalizations were found in the whole group of BD patients (r = - 0.51, p = 0.04) and in male BD patients (r = - 0.88, p = 0.04). Finally, no statistically significant correlations were observed in female BD patients. Our findings further confirm the putative role of the ACC in the pathophysiology of BD. Interestingly, this study also suggested the presence of gender-specific GM volume reductions in ACC in BD, which may also be associated to poor outcome.
Collapse
Affiliation(s)
| | - Valentina Ciappolino
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Section of Radiology, Department of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy
| | - Mirella Ruggeri
- Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - A Carlo Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy
| | - Marcella Bellani
- Interuniversity Centre for Behavioural Neurosciences, AOUI Verona, Verona, Italy.,Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, via F. Sforza 35, 20122, Milan, Italy. .,Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, Houston, TX, USA.
| |
Collapse
|
11
|
Basal ganglia volumetric changes in psychotic spectrum disorders. J Affect Disord 2019; 255:150-157. [PMID: 31153051 DOI: 10.1016/j.jad.2019.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/30/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Basal ganglia are particularly important for understanding the pathobiology of psychosis given their key roles in dopaminergic neurotransmission which are associated with psychotic symptoms and one of the target sites of antipsychotic drugs. Psychotic symptoms are prevalent in both schizophrenia (SZ) and bipolar disorder (BD). Although the components of basal ganglia are implicated in psychosis, comparative structural changes of components of the basal ganglia between SZ and BD are less clear after disentanglement of clinical effects of antipsychotic dose, duration and severity of illness. METHODS In this study, we examined the morphology of the basal ganglia in 326 subjects comprising of 45 patients of BD type I with psychotic symptoms, 97 first-episode SZ (FE-SZ) patients, 86 non-first-episode chronic SZ (NFE-SZ) patients, in comparison with 98 healthy controls (HC). RESULTS Results showed increased volumes in subregions of caudate, putamen, and pallidum in chronic SZ patients compared with HC after controlling for age, gender, and total intracranial volume. No change was found between FE-SZ patients, psychotic BD patients, and HC. Furthermore, hierarchical regressions showed that the dosage of antipsychotics had a significant contribution to basal ganglia volumetric enlargement in NFE-SZ after controlling for the effects of age, gender, total intracranial volume, age at illness onset, as well as illness duration and severity. LIMITATIONS Lack of information about the cumulative history of exposure to medication for all the three groups of patients is a major limitation in our study. CONCLUSIONS There are distinct basal ganglia structural changes in SZ and psychotic BD. Basal ganglia are enlarged in chronic SZ but not in FE-SZ and BD and this enlargement is significantly associated with antipsychotic dosage over and beyond the effects of illness duration and severity.
Collapse
|
12
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
13
|
Sorella S, Lapomarda G, Messina I, Frederickson JJ, Siugzdaite R, Job R, Grecucci A. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin 2019; 23:101854. [PMID: 31121524 PMCID: PMC6529770 DOI: 10.1016/j.nicl.2019.101854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/21/2022]
Abstract
Despite the traditional view of Schizophrenia (SZ) and Bipolar disorder (BD) as separate diagnostic categories, the validity of such a categorical approach is challenging. In recent years, the hypothesis of a continuum between Schizophrenia (SZ) and Bipolar disorder (BD), postulating a common pathophysiologic mechanism, has been proposed. Although appealing, this unifying hypothesis may be too simplistic when looking at cognitive and affective differences these patients display. In this paper, we aim to test an expanded version of the continuum hypothesis according to which the continuum extends over three clusters: the psychotic, the cognitive, and the affective. We applied an innovative approach known as Source-based Morphometry (SBM) to the structural images of 46 individuals diagnosed with SZ, 46 with BD and 66 healthy controls (HC). We also analyzed the psychological profiles of the three groups using cognitive, affective, and clinical tests. At a neural level, we found evidence for a shared psychotic core in a distributed network involving portions of the medial parietal and temporo-occipital areas, as well as parts of the cerebellum and the middle frontal gyrus. We also found evidence of a cognitive core more compromised in SZ, including alterations in a fronto-parietal circuit, and mild evidence of an affective core more compromised in BD, including portions of the temporal and occipital lobes, cerebellum, and frontal gyrus. Such differences were confirmed by the psychological profiles, with SZ patients more impaired in cognitive tests, while BD in affective ones. On the bases of these results we put forward an expanded view of the continuum hypothesis, according to which a common psychotic core exists between SZ and BD patients complemented by two separate cognitive and affective cores that are both impaired in the two patients' groups, although to different degrees.
Collapse
Affiliation(s)
- Sara Sorella
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Gaia Lapomarda
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | | | | | - Roma Siugzdaite
- Department of Experimental Psychology, Faculty of Psychological and Pedagogical Sciences, Ghent University, Ghent, Belgium.
| | - Remo Job
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science (DiPSCo), University of Trento, Rovereto, Italy.
| |
Collapse
|
14
|
Lu X, Zhong Y, Ma Z, Wu Y, Fox PT, Zhang N, Wang C. Structural imaging biomarkers for bipolar disorder: Meta-analyses of whole-brain voxel-based morphometry studies. Depress Anxiety 2019; 36:353-364. [PMID: 30475436 DOI: 10.1002/da.22866] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/20/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a common and destructive psychiatric illness worldwide. Although it is known that BD is associated with morphological abnormalities of the brain, the regions implicated in BD remain unclear. Therefore, we aimed to update current knowledge on potential structural imaging biomarkers of BD. METHODS Studies published up to January 31, 2018, were identified by a comprehensive literature search of PubMed, EBSCO, and BrainMap voxel-based morphometry (VBM) database. Whole-brain VBM studies that examined gray matter (GM) abnormalities of group comparisons between BD and healthy controls (HC) and reported results as coordinates in a standard reference space were included. Different meta-analyses were performed by activation likelihood estimation (ALE) algorithm. RESULTS A total of 46 studies with 56 experiments, including 1720 subjects and 268 foci were included. Seven different meta-analyses were calculated separately across experiments reporting decreased or increased GM volume among BD, BDΙ, BD-adults, and BD-youths groups. Fifteen regions of significantly different GM volume between four groups and HC were identified. There were extensive GM deficits in the prefrontal and temporal cortex, and enlargements in the putamen, cingulate cortex, and precuneus. CONCLUSIONS The results revealed that the thinning of prefrontal cortex was a key region in the pathophysiology of BD. The enlargement of the cingulate cortex may be implicated in a compensatory mechanism. It underscored important differences between BD-adults and BD-youths and specific biomarkers of three subgroups.
Collapse
Affiliation(s)
- Xin Lu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuan Zhong
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Mental Health and Cognitive Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zijuan Ma
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Wu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peter T Fox
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,South Texas Veterans Healthcare System, University of Texas Health San Antonio, San Antonio, United States.,Research Imaging Institute, University of Texas Health San Antonio, San Antonio, United States
| | - Ning Zhang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, Jiangsu, China.,Cognitive Behavioral Therapy Institute of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Maggioni E, Crespo-Facorro B, Nenadic I, Benedetti F, Gaser C, Sauer H, Roiz-Santiañez R, Poletti S, Marinelli V, Bellani M, Perlini C, Ruggeri M, Altamura AC, Diwadkar VA, Brambilla P. Common and distinct structural features of schizophrenia and bipolar disorder: The European Network on Psychosis, Affective disorders and Cognitive Trajectory (ENPACT) study. PLoS One 2017; 12:e0188000. [PMID: 29136642 PMCID: PMC5685634 DOI: 10.1371/journal.pone.0188000] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/30/2017] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology, their neural underpinnings are still under investigation. Here, structural Magnetic Resonance Imaging (MRI) data collected from a large sample of BD and SCZ patients and healthy controls (HC) were analyzed in terms of gray matter volume (GMV) using both voxel based morphometry (VBM) and a region of interest (ROI) approach. METHODS The analysis was conducted on two datasets, Dataset1 (802 subjects: 243 SCZ, 176 BD, 383 HC) and Dataset2, a homogeneous subset of Dataset1 (301 subjects: 107 HC, 85 BD and 109 SCZ). General Linear Model analyses were performed 1) at the voxel-level in the whole brain (VBM study), 2) at the regional level in the anatomical regions emerged from the VBM study (ROI study). The GMV comparison across groups was integrated with the analysis of GMV correlates of different clinical dimensions. RESULTS The VBM results of Dataset1 showed 1) in BD compared to HC, GMV deficits in right cingulate, superior temporal and calcarine cortices, 2) in SCZ compared to HC, GMV deficits in widespread cortical and subcortical areas, 3) in SCZ compared to BD, GMV deficits in insula and thalamus (p<0.05, cluster family wise error corrected). The regions showing GMV deficits in the BD group were mostly included in the SCZ ones. The ROI analyses confirmed the VBM results at the regional level in most of the clusters from the SCZ vs. HC comparison (p<0.05, Bonferroni corrected). The VBM and ROI analyses of Dataset2 provided further evidence for the enhanced GMV deficits characterizing SCZ. Based on the clinical-neuroanatomical analyses, we cannot exclude possible confounding effects due to 1) age of onset and medication in BD patients, 2) symptoms severity in SCZ patients. CONCLUSION Our study reported both shared and specific neuroanatomical characteristics between the two disorders, suggesting more severe and generalized GMV deficits in SCZ, with a specific role for insula and thalamus.
Collapse
Affiliation(s)
- Eleonora Maggioni
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Philipps University Marburg / Marburg University Hospital UKGM, Marburg, Germany
| | - Francesco Benedetti
- Department of Clinical Neurosciences and Centro di Eccellenza Risonanza Magnetica ad Alto Campo, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Sara Poletti
- Department of Clinical Neurosciences and Centro di Eccellenza Risonanza Magnetica ad Alto Campo, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Marinelli
- Department of Experimental and Clinical Medical Sciences (DISM), University of Udine, Udine, Italy
| | - Marcella Bellani
- Section of Psychiatry, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Cinzia Perlini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Mirella Ruggeri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - A. Carlo Altamura
- Department of Neurosciences and Mental Health, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neuroscience, Wayne State University, Detroit, MI, United States of America
| | - Paolo Brambilla
- IRCCS Scientific Institute “E. Medea”, Bosisio Parini, Lecco, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
16
|
A neuroanatomical account of mental time travelling in schizophrenia: A meta-analysis of functional and structural neuroimaging data. Neurosci Biobehav Rev 2017; 80:211-222. [DOI: 10.1016/j.neubiorev.2017.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/29/2017] [Indexed: 01/29/2023]
|
17
|
Squarcina L, Bellani M, Rossetti MG, Perlini C, Delvecchio G, Dusi N, Barillari M, Ruggeri M, Altamura CA, Bertoldo A, Brambilla P. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One 2017; 12:e0178089. [PMID: 28658249 PMCID: PMC5489157 DOI: 10.1371/journal.pone.0178089] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Several strands of evidence reported a significant overlapping, in terms of clinical symptoms, epidemiology and treatment response, between the two major psychotic disorders—Schizophrenia (SCZ) and Bipolar Disorder (BD). Nevertheless, the shared neurobiological correlates of these two disorders are far from conclusive. This study aims toward a better understanding of possible common microstructural brain alterations in SCZ and BD. Magnetic Resonance Diffusion data of 33 patients with BD, 19 with SCZ and 35 healthy controls were acquired. Diffusion indexes were calculated, then analyzed using Tract-Based Spatial Statistics (TBSS). We tested correlations with clinical and psychological variables. In both patient groups mean diffusion (MD), volume ratio (VR) and radial diffusivity (RD) showed a significant increase, while fractional anisotropy (FA) and mode (MO) decreased compared to the healthy group. Changes in diffusion were located, for both diseases, in the fronto-temporal and callosal networks. Finally, no significant differences were identified between patient groups, and a significant correlations between length of disease and FA and VR within the corpus callosum, corona radiata and thalamic radiation were observed in bipolar disorder. To our knowledge, this is the first study applying TBSS on all the DTI indexes at the same time in both patient groups showing that they share similar impairments in microstructural connectivity, with particular regards to fronto-temporal and callosal communication, which are likely to worsen over time. Such features may represent neural common underpinnings characterizing major psychoses and confirm the central role of white matter pathology in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
| | | | - Maria Gloria Rossetti
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Cinzia Perlini
- Section of Clinical Psychology, Department of Neurosciences, Biomedicine and Movement Sciences, Verona, Italy
| | | | - Nicola Dusi
- Section of Psychiatry, AOUI Verona, Verona, Italy
| | - Marco Barillari
- Department of Radiology, University of Verona, Verona, Italy
| | | | - Carlo A. Altamura
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Alessandra Bertoldo
- Department of Information Engineering (DEI), University of Padova, Padova, Italy
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
- Department of Psychiatry and Behavioral Sciences, UTHouston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder-a systematic review of the magnetic resonance neuroimaging literature. NPJ SCHIZOPHRENIA 2017; 3:15. [PMID: 28560261 PMCID: PMC5441538 DOI: 10.1038/s41537-017-0013-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Since Emil Kraepelin's conceptualization of endogenous psychoses as dementia praecox and manic depression, the separation between primary psychotic disorders and primary affective disorders has been much debated. We conducted a systematic review of case-control studies contrasting magnetic resonance imaging studies in schizophrenia and bipolar disorder. A literature search in PubMed of studies published between January 2005 and December 2016 was conducted, and 50 structural, 29 functional, 7 magnetic resonance spectroscopy, and 8 combined imaging and genetic studies were deemed eligible for systematic review. Structural neuroimaging studies suggest white matter integrity deficits that are consistent across the illnesses, while gray matter reductions appear more widespread in schizophrenia compared to bipolar disorder. Spectroscopy studies in cortical gray matter report evidence of decreased neuronal integrity in both disorders. Functional neuroimaging studies typically report similar functional architecture of brain networks in healthy controls and patients across the psychosis spectrum, but find differential extent of alterations in task related activation and resting state connectivity between illnesses. The very limited imaging-genetic literature suggests a relationship between psychosis risk genes and brain structure, and possible gene by diagnosis interaction effects on functional imaging markers. While the existing literature suggests some shared and some distinct neural markers in schizophrenia and bipolar disorder, it will be imperative to conduct large, well designed, multi-modal neuroimaging studies in medication-naïve first episode patients that will be followed longitudinally over the course of their illness in an effort to advance our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Badari Birur
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Nina Vanessa Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Richard C. Shelton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Adrienne Carol Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
19
|
Ganzola R, Duchesne S. Voxel-based morphometry meta-analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord 2017; 19:74-83. [PMID: 28444949 DOI: 10.1111/bdi.12488] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/06/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We present a retrospective meta-analysis of voxel-based morphometry (VBM) of gray (GM) and white matter (WM) differences between patients with bipolar disorder (BD) and behaviorally healthy controls. METHODS We used the activation likelihood estimation and Sleuth software for our meta-analysis, considering P-value maps at the cluster level inference of .05 with uncorrected P<.001. Results were visualized with the software MANGO. RESULTS We included twenty-five articles in the analysis, and separated the comparisons where BD patients had lower GM or WM concentrations than controls (573 subjects, 21 experiments, and 117 locations/180 subjects, five experiments, and 15 locations, respectively) and the comparisons where BD patients had greater GM concentrations than controls (217 subjects, nine experiments, and 49 locations). Higher WM concentrations in BD patients were not detected. We observed for BD reduced GM concentrations in the left medial frontal gyrus and right inferior/precentral gyri encompassing the insular cortex, and greater GM concentrations in the left putamen. Further, lower WM concentrations were detected in the left inferior longitudinal fasciculus, left superior corona radiata, and left posterior cingulum. CONCLUSIONS This meta-analysis confirms deterioration of frontal and insular regions as already found in previous meta-analysis. GM reductions in these regions could be related to emotional processing and decision making, which are typically impaired in BD. Moreover, we found abnormalities in precentral frontal areas and putamen that have been linked to more basic functions, which could point to sensory and specific cognitive deficits. Finally, WM reductions involved circuitry that may contribute to emotional dysregulation in BD.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
20
|
Abstract
Although schizophrenia (SCZ) and bipolar disorder (BD) share elements of pathology (Ellison-Wright and Bullmore, 2009), the neural mechanisms underlying these disorders are still under investigation. Up until now, many neuroimaging studies investigated the brain structural differences of SCZ and BD compared with healthy controls (HC), trying to identify the possible neuroanatomical markers for the two disorders. However, just a few studies focused on the brain structural changes between the two diagnoses. The present review summarises the findings of the voxel-based grey matter (GM) comparisons between SCZ and BD, with the objective to highlight the possible consistent anatomical differences between the two disorders. While the comparisons between patients and HC highlighted overlapping areas of GM reduction in insula and anterior cingulate cortex, the SCZ-BD comparisons suggest the presence of more generalised GM deficits in SCZ compared with BD. Indeed, in a number of studies, SCZ patients showed lower GM volumes than BD patients in fronto-temporal cortex, thalamus, hippocampus and amygdala. Conversely, only a couple of studies reported GM deficits in BD compared with SCZ, both at the level of cerebellum. In summary, the two disorders exhibit both common and specific neuroanatomical characteristics, whose knowledge is mandatory to develop innovative diagnostic and treatment strategies.
Collapse
|
21
|
Lee JS, Park G, Song MJ, Choi KH, Lee SH. Early visual processing for low spatial frequency fearful face is correlated with cortical volume in patients with schizophrenia. Neuropsychiatr Dis Treat 2016; 12:1-14. [PMID: 26730192 PMCID: PMC4694689 DOI: 10.2147/ndt.s97089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patients with schizophrenia present with dysfunction of the magnocellular pathway, which might impair their early visual processing. We explored the relationship between functional abnormality of early visual processing and brain volumetric changes in schizophrenia. Eighteen patients and 16 healthy controls underwent electroencephalographic recordings and high-resolution magnetic resonance imaging. During electroencephalographic recordings, participants passively viewed neutral or fearful faces with broad, high, or low spatial frequency characteristics. Voxel-based morphometry was performed to investigate brain volume correlates of visual processing deficits. Event related potential analysis suggested that patients with schizophrenia had relatively impaired P100 processing of low spatial frequency fearful face stimuli compared with healthy controls; patients' gray-matter volumes in the dorsolateral and medial prefrontal cortices positively correlated with this amplitude. In addition, patients' gray-matter volume in the right cuneus positively correlated with the P100 amplitude in the left hemisphere for the high spatial frequency neutral face condition and that in the left dorsolateral prefrontal cortex negatively correlated with the negative score of the Positive and Negative Syndrome Scale. No significant correlations were observed in healthy controls. This study suggests that the cuneus and prefrontal cortex are significantly involved with the early visual processing of magnocellular input in patients with schizophrenia.
Collapse
Affiliation(s)
- Jung Suk Lee
- Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Gewnhi Park
- Department of Psychology, Azusa Pacific University, Azusa, CA, USA
| | - Myeong Ju Song
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kee-Hong Choi
- Department of Psychology, Korea University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Goyang, Republic of Korea; Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea
| |
Collapse
|
22
|
Poletti S, Vai B, Smeraldi E, Cavallaro R, Colombo C, Benedetti F. Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes. J Affect Disord 2016; 189:290-7. [PMID: 26454335 DOI: 10.1016/j.jad.2015.09.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/09/2015] [Accepted: 09/26/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adverse childhood experiences (ACE) can lead to several negative consequences in adult life, are highly prevalent in psychiatric disorders where they associate with clinical and brain morphological features. Grey matter volume loss is a central characteristic of bipolar disorder (BD) and schizophrenia (SCZ). The aim of this study is to measure the effect of diagnosis and ACE on GM volume in a sample of patients with BD or SCZ compared with healthy controls (HC). METHODS We studied 206 depressed BD patients, 96 SCZ patients and 136 healthy subjects. GM volumes were estimated with 3.0 Tesla MRI and analyzed with VBM technique. The effect of diagnosis was investigated in the whole sample and separately exposed to high and low ACE subjects. RESULTS An effect of diagnosis was observed in orbitofrontal cortex encompassing BA 47 and insula, and in the thalamus. HC had the highest volume and SCZ patients the lowest with BD patients showing an intermediate volume. This pattern persisted only in subjects with high ACE. No differences were observed for low ACE subjects. LIMITATIONS The three diagnostic groups differ for age and education, previous and current medications, and treatment periods. CONCLUSIONS Our results underline the importance of ACE on the neural underpinnings of psychiatric psychopathology and suggest a major role of exposure to ACE for the GM deficits to reveal in clinical populations. Exposure to early stress is a crucial factor that must be taken in to account when searching for biomarkers of BD and SCZ.
Collapse
Affiliation(s)
- Sara Poletti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy.
| | - Benedetta Vai
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Enrico Smeraldi
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Roberto Cavallaro
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Cristina Colombo
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy
| | - Francesco Benedetti
- Scientific Institute and University Vita-Salute San Raffaele, Department of Clinical Neurosciences, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
23
|
Palaniyappan L, Maayan N, Bergman H, Davenport C, Adams CE, Soares‐Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. Cochrane Database Syst Rev 2015; 2015:CD011021. [PMID: 26252640 PMCID: PMC7104330 DOI: 10.1002/14651858.cd011021.pub2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Schizophrenia is a psychiatric disorder which involves distortions in thought and perception, blunted affect, and behavioural disturbances. The longer psychosis goes unnoticed and untreated, the more severe the repercussions for relapse and recovery. There is some evidence that early intervention services can help, and diagnostic techniques that could contribute to early intervention may offer clinical utility in these situations. The index test being evaluated in this review is the structural magnetic resonance imaging (MRI) analysis technique known as voxel-based morphometry (VBM) that estimates the distribution of grey matter tissue volume across several brain regions. This review is an exploratory examination of the diagnostic 'potential' of VBM for use as an additional tool in the clinical examination of patients with first episode psychosis to establish whether an individual will progress on to developing schizophrenia as opposed to other types of psychosis. OBJECTIVES To determine whether VBM applied to the brain can be used to differentiate schizophrenia from other types of psychosis in participants who have received a clinical diagnosis of first episode psychosis. SEARCH METHODS In December 2013, we updated a previous search (May 2012) of MEDLINE, EMBASE, and PsycInfo using OvidSP. SELECTION CRITERIA We included retrospective and prospective studies that consecutively or randomly selected adolescent and adult participants (< 45 years) with a first episode of psychosis; and that evaluated the diagnostic accuracy of VBM for differentiating schizophrenia from other psychoses compared with a clinical diagnosis made by a qualified mental health professional, with or without the use of standard operational criteria or symptom checklists. We excluded studies in children, and in adult participants with organic brain disorders or who were at high risk for schizophrenia, such as people with a genetic predisposition. DATA COLLECTION AND ANALYSIS Two review authors screened all references for inclusion. We assessed the quality of studies using the QUADAS-2 instrument. Due to a lack of data, we were not able to extract 2 x 2 data tables for each study nor undertake any meta-analysis. MAIN RESULTS We included four studies with a total of 275 participants with first episode psychosis. VBM was not used to diagnose schizophrenia in any of the studies, instead VBM was used to quantify the magnitude of differences in grey matter volume. Therefore, none of the included studies reported data that could be used in the analysis, and we summarised the findings narratively for each study. AUTHORS' CONCLUSIONS There is no evidence to currently support diagnosing schizophrenia (as opposed to other psychotic disorders) using the pattern of brain changes seen in VBM studies in patients with first episode psychosis. VBM has the potential to discriminate between diagnostic categories but the methods to do this reliably are currently in evolution. In addition, the lack of applicability of the use of VBM to clinical practice in the studies to date limits the usefulness of VBM as a diagnostic aid to differentiate schizophrenia from other types of psychotic presentations in people with first episode of psychosis.
Collapse
Affiliation(s)
- Lena Palaniyappan
- The University of NottinghamDivison of Psychiatry, Institute of Mental HealthRoom 09, C FloorInnovation Park, Triumph RoadNottinghamUKNG7 2TU
| | - Nicola Maayan
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | - Hanna Bergman
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | - Clare Davenport
- University of BirminghamPublic Health, Epidemiology and BiostatisticsBirminghamUKB15 2TT
| | - Clive E Adams
- The University of NottinghamCochrane Schizophrenia GroupInstitute of Mental HealthInnovation Park, Triumph Road,NottinghamUKNG7 2TU
| | - Karla Soares‐Weiser
- Enhance Reviews LtdCentral Office, Cobweb BuildingsThe Lane, LyfordWantageUKOX12 0EE
| | | |
Collapse
|
24
|
Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study. Schizophr Res 2015; 165:212-9. [PMID: 25935815 DOI: 10.1016/j.schres.2015.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 12/24/2022]
Abstract
While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (p<0.05, FDR corrected) in medial and right dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (p<0.05, FDR corrected) yielded a similar pattern, however, there was an additional significant reduction in schizophrenia patients in the (posterior) hippocampus bilaterally, left dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at p<0.001 (uncorr.) for a minor parietal cluster, but not for prefrontal areas. Our results suggest that the more extensive prefrontal, thalamic, and hippocampal deficits that might set apart schizophrenia and bipolar disorder might not be related to mere appearance of psychotic symptoms at some stage of the disorders.
Collapse
|
25
|
Altered Spontaneous Brain Activity in Schizophrenia: A Meta-Analysis and a Large-Sample Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:204628. [PMID: 26180786 PMCID: PMC4477065 DOI: 10.1155/2015/204628] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/05/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022]
Abstract
Altered spontaneous brain activity as measured by ALFF, fALFF, and ReHo has been reported in schizophrenia, but no consensus has been reached on alternations of these indexes in the disorder. We aimed to clarify the regional alterations in ALFF, fALFF, and ReHo in schizophrenia using a meta-analysis and a large-sample validation. A meta-analysis of activation likelihood estimation was conducted based on the abnormal foci of ten studies. A large sample of 86 schizophrenia patients and 89 healthy controls was compared to verify the results of the meta-analysis. Meta-analysis demonstrated that the alternations in ALFF and ReHo had similar distribution in schizophrenia patients. The foci with decreased ALFF/fALFF and ReHo in schizophrenia were mainly located in the somatosensory cortex, posterior parietal cortex, and occipital cortex; however, foci with increased ALFF/fALFF and ReHo were mainly located in the bilateral striatum, medial temporal cortex, and medial prefrontal cortex. The large-sample study showed consistent findings with the meta-analysis. These findings may expound the pathophysiological hypothesis and guide future research.
Collapse
|
26
|
Pearlson GD. Etiologic, Phenomenologic, and Endophenotypic Overlap of Schizophrenia and Bipolar Disorder. Annu Rev Clin Psychol 2015; 11:251-81. [DOI: 10.1146/annurev-clinpsy-032814-112915] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Godfrey D. Pearlson
- Departments of Psychiatry and Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510;
- Olin Neuropsychiatry Research Center, Hartford Healthcare Corporation, Hartford, Connecticut 06106
| |
Collapse
|
27
|
Shepherd AM, Quidé Y, Laurens KR, O’Reilly N, Rowland JE, Mitchell PB, Carr VJ, Green MJ. Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction. J Psychiatry Neurosci 2015; 40:58-68. [PMID: 25268788 PMCID: PMC4275333 DOI: 10.1503/jpn.130283] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shared genetic vulnerability for schizophrenia and bipolar disorder may be associated with common neuroanatomical features. In view of the evidence for working memory dysfunction as a candidate intermediate phenotype for both disorders, we explored neuroanatomical distinctions between subtypes defined according to working memory (n-back task) performance. METHODS We analyzed T1-weighted MRI scans for patients with schizophrenia-spectrum disorder, bipolar-I disorder (BD-I) and healthy controls. The VBM8 toolbox was used to assess differences in grey and white matter volume across traditional diagnostic groups (schizophrenia v. BD-I). Subsequently, groups were defined as "executively spared" (ES) based on the achievement of greater than 50% accuracy in the 2-back task performance (comparable to performance in the control group) or "executively deficit" (ED) based on the achievement of less than 50% accuracy. RESULTS Our study included 40 patients with schizophrenia-spectrum disorders, 30 patients with BD-I and 34 controls. Both the schizophrenia and BD-I groups showed grey matter volume reductions relative to the control group, but not relative to each other. The ED subtype (n = 32 [10 BD-I, 22 schizophrenia]) showed grey matter volume reductions in the bilateral superior and medial frontal gyri, right inferior opercular gyri and hippocampus relative to controls. The ES subtype (n = 38 [20 BD-I, 18 schizophrenia]) showed grey matter volume reductions in the right precuneus and left superior and medial orbital frontal gyri relative to controls. The ED subtype showed grey matter volume reduction in the right inferior frontal and precentral gyri relative to the ES subtype. There were no significant differences in white matter volume in any group comparisons. LIMITATIONS This analysis was limited by small sample sizes. Further, insufficient numbers were available to assess a control-deficit comparison group. We were unable to assess the effects of mood stabilizer dose on brain structure. CONCLUSION Neuroanatomical commonalities are evident among patients with schizophrenia-spectrum disorders and BD-I with working memory deficits. Reduced inferior frontal lobe volume may mediate cognitive deficits shared across the psychosis-mood spectrum.
Collapse
Affiliation(s)
- Alana M. Shepherd
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Yann Quidé
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Kristin R. Laurens
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Nicole O’Reilly
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Jesseca E. Rowland
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Vaughan J. Carr
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| | - Melissa J. Green
- School of Psychiatry, University of New South Wales, Sydney NSW, Australia (Shepherd, Laurens, O’Reilly, Rowland, Mitchell, Carr, Green); Schizophrenia Research Institute, Sydney NSW, Australia (Shepherd, Quidé, Laurens, Carr, Green); Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom (Laurens); Black Dog Institute, Sydney NSW, Australia (Mitchell, Green); Neuroscience Research Australia, Sydney NSW, Australia (Green)
| |
Collapse
|
28
|
Koch K, Rus OG, Reeß TJ, Schachtzabel C, Wagner G, Schultz CC, Sorg C, Schlösser RGM. Functional connectivity and grey matter volume of the striatum in schizophrenia. Br J Psychiatry 2014; 205:204-13. [PMID: 25012683 DOI: 10.1192/bjp.bp.113.138099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Alterations in the dopaminergic reward system, predominantly the striatum, constitute core characteristics of schizophrenia. AIMS Functional connectivity of the dorsal striatum during reward-related trial-and-error learning was investigated in 17 people with schizophrenia and 18 healthy volunteers and related to striatal grey matter volume and psychopathology. METHOD We used voxel-based morphometry and psychophysiological interaction to examine striatal volume and connectivity. RESULTS A reduced functional connectivity between left striatum and temporo-occipital areas, precuneus and insula could be detected in the schizophrenia group. The positive correlation between grey matter volume and functional connectivity of the left striatum yielded significant results in a very similar network. Connectivity of the left striatum was negatively correlated with negative symptoms. CONCLUSIONS Present results suggest a disruption in striatal functional connectivity that is closely linked to grey matter morphometry of the striatum. Decreased connectivity between the striatum and psychopathologically relevant networks may explain the emergence of negative symptoms.
Collapse
Affiliation(s)
- Kathrin Koch
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Oana Georgiana Rus
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Tim Jonas Reeß
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Claudia Schachtzabel
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Gerd Wagner
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - C Christoph Schultz
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Christian Sorg
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Ralf G M Schlösser
- Kathrin Koch, PhD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Oana Georgiana Rus, MA, Tim Jonas Reeß, MA, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München TUM, Munich and Graduate School of Systemic Neurosciences GSN, Ludwig-Maximilians-Universität, Biocenter, Munich; Claudia Schachtzabel, MA, Gerd Wagner, PhD, C. Christoph Schultz, MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena; Christian Sorg, MD, Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich; Ralf G. M. Schlösser, Prof. MD, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
29
|
Thirunavukkarasu P, Vijayakumari AA, John JP, Halahalli HN, Paul P, Sen S, Purushottam M, Jain S. An exploratory association study of the influence of dysbindin and neuregulin polymorphisms on brain morphometry in patients with schizophrenia and healthy subjects from South India. Asian J Psychiatr 2014; 10:62-8. [PMID: 25042954 DOI: 10.1016/j.ajp.2014.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 01/20/2023]
Abstract
Multiple genetic risk variants may act in a convergent manner leading on to the pathophysiological alterations of brain structure and function in schizophrenia. We examined the effect of polymorphisms of two candidate genes that mediate glutamatergic signaling, viz., dysbindin (rs1011313) and neuregulin (rs35753505), on brain morphometry in patients with schizophrenia (N=38) and healthy subjects (N=37) from South India. Patients with schizophrenia showed trend-level (p<0.001 uncorrected, 20 voxel extent correction) volumetric reductions in multiple brain regions when compared to healthy control subjects. Trend-level volumetric differences were also noted between homozygotes of the risk allele (AA) of the neuregulin (NRG1) polymorphism and heterozygotes (AG), as well as homozygotes of the risk allele (CC) of the dysbindin (DTNBP1) polymorphism and heterozygotes (TC), irrespective of diagnosis. Moreover, an additive effect of the risk alleles on brain morphometry was also noted. These preliminary findings highlight the possible influence of polymorphisms of risk genes on brain morphometry in schizophrenia.
Collapse
Affiliation(s)
- Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), NIMHANS, Bangalore 560029, India; Department of Psychiatry, NIMHANS, Bangalore 560029, India.
| | - Anupa A Vijayakumari
- Multimodal Brain Image Analysis Laboratory (MBIAL), NIMHANS, Bangalore 560029, India; Department of Psychiatry, NIMHANS, Bangalore 560029, India.
| | - John P John
- Multimodal Brain Image Analysis Laboratory (MBIAL), NIMHANS, Bangalore 560029, India; Department of Psychiatry, NIMHANS, Bangalore 560029, India; Department of Clinical Neuroscience, NIMHANS, Bangalore 560029, India.
| | - Harsha N Halahalli
- Multimodal Brain Image Analysis Laboratory (MBIAL), NIMHANS, Bangalore 560029, India; Department of Neurophysiology, NIMHANS, Bangalore 560029, India.
| | - Pradip Paul
- Department of Psychiatry, NIMHANS, Bangalore 560029, India; Molecular Genetics Laboratory, NIMHANS, Bangalore 560029, India.
| | - Somdatta Sen
- Department of Psychiatry, NIMHANS, Bangalore 560029, India; Molecular Genetics Laboratory, NIMHANS, Bangalore 560029, India.
| | - Meera Purushottam
- Department of Psychiatry, NIMHANS, Bangalore 560029, India; Molecular Genetics Laboratory, NIMHANS, Bangalore 560029, India.
| | - Sanjeev Jain
- Department of Psychiatry, NIMHANS, Bangalore 560029, India; Molecular Genetics Laboratory, NIMHANS, Bangalore 560029, India.
| |
Collapse
|
30
|
Anderson D, Ardekani BA, Burdick KE, Robinson DG, John M, Malhotra AK, Szeszko PR. Overlapping and distinct gray and white matter abnormalities in schizophrenia and bipolar I disorder. Bipolar Disord 2013; 15:680-93. [PMID: 23796123 PMCID: PMC3762889 DOI: 10.1111/bdi.12096] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 01/13/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Schizophrenia and bipolar disorder may share common neurobiological mechanisms, but few studies have directly compared gray and white matter structure in these disorders. We used diffusion-weighted magnetic resonance imaging and a region of interest based analysis to identify overlapping and distinct gray and white matter abnormalities in 35 patients with schizophrenia and 20 patients with bipolar I disorder in comparison to 56 healthy volunteers. METHODS We examined fractional anisotropy within the white matter and mean diffusivity within the gray matter in 42 regions of interest defined on a probabilistic atlas following non-linear registration of the images to atlas space. RESULTS Patients with schizophrenia had significantly lower fractional anisotropy in temporal (superior temporal and parahippocampal) and occipital (superior and middle occipital) white matter compared to patients with bipolar disorder and healthy volunteers. By contrast, both patient groups demonstrated significantly higher mean diffusivity in frontal (inferior frontal and lateral orbitofrontal) and temporal (superior temporal and parahippocampal) gray matter compared to healthy volunteers, but did not differ from each other. CONCLUSIONS Our study implicates overlapping gray matter frontal and temporal lobe structural alterations in the neurobiology of schizophrenia and bipolar I disorder, but suggests that temporal and occipital lobe white matter deficits may be an additional risk factor for schizophrenia. Our findings may have relevance for future diagnostic classification systems and the identification of susceptibility genes for these disorders.
Collapse
Affiliation(s)
- Dana Anderson
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY
| | - Babak A. Ardekani
- The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Katherine E. Burdick
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NY, NY
| | - Delbert G. Robinson
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Majnu John
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY
| | - Anil K. Malhotra
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| | - Philip R. Szeszko
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY,The Zucker Hillside Hospital, North Shore-LIJ Health System, Glen Oaks, NY,Hofstra North Shore – LIJ School of Medicine, Departments of Psychiatry and Molecular Medicine, Hempstead, NY, USA
| |
Collapse
|
31
|
Aoki Y, Orikabe L, Takayanagi Y, Yahata N, Mozue Y, Sudo Y, Ishii T, Itokawa M, Suzuki M, Kurachi M, Okazaki Y, Kasai K, Yamasue H. Volume reductions in frontopolar and left perisylvian cortices in methamphetamine induced psychosis. Schizophr Res 2013; 147:355-61. [PMID: 23688384 DOI: 10.1016/j.schres.2013.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/21/2013] [Accepted: 04/22/2013] [Indexed: 11/18/2022]
Abstract
Consumption of methamphetamine disturbs dopaminergic transmission and sometimes provokes schizophrenia-like-psychosis, named methamphetamine-associated psychosis (MAP). While previous studies have repeatedly reported regional volume reductions in the frontal and temporal areas as neuroanatomical substrates for psychotic symptoms, no study has examined whether such neuroanatomical substrates exist or not in patients with MAP. Magnetic resonance images obtained from twenty patients with MAP and 20 demographically-matched healthy controls (HC) were processed for voxel-based morphometry (VBM) using Diffeomorphic Anatomical Registration using Exponentiated Lie Algebra. An analysis of covariance model was adopted to identify volume differences between subjects with MAP and HC, treating intracranial volume as a confounding covariate. The VBM analyses showed significant gray matter volume reductions in the left perisylvian structures, such as the posterior inferior frontal gyrus and the anterior superior temporal gyrus, and the frontopolar cortices, including its dorsomedial, ventromedial, dorsolateral, and ventrolateral portions, and white matter volume reduction in the orbitofrontal area in the patients with MAP compared with the HC subjects. The smaller regional gray matter volume in the medial portion of the frontopolar cortex was significantly correlated with the severe positive symptoms in the individuals with MAP. The volume reductions in the left perisylvian structure suggest that patients with MAP have a similar pathophysiology to schizophrenia, whereas those in the frontopolar cortices and orbitofrontal area suggest an association with antisocial traits or vulnerability to substance dependence.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sanders LLO, de Millas W, Heinz A, Kathmann N, Sterzer P. Apparent motion perception in patients with paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2013; 263:233-9. [PMID: 22865160 DOI: 10.1007/s00406-012-0344-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Impaired perceptual inference has been suggested to be at the core of positive symptoms in schizophrenia. Apparent motion (AM) is a visual illusion in which perceptual inference gives rise to the experience of a single object moving back and forth when two spatially separated objects are flashed in alternation. Here, we investigated the strength of AM perception in patients with paranoid schizophrenia. Patients were less susceptible to the illusion as indicated by a lower probability of motion perception at the individual's optimal presentation frequency for AM. In addition, the probability of AM perception was inversely related to delusional conviction in the patient group. These results suggest that schizophrenia may be associated with a reduced susceptibility to visual phenomena that commonly rely on perceptual inference.
Collapse
Affiliation(s)
- Lia Lira Olivier Sanders
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
33
|
Trost S, Platz B, Usher J, Scherk H, Wobrock T, Ekawardhani S, Meyer J, Reith W, Falkai P, Gruber O. The DTNBP1 (dysbindin-1) gene variant rs2619522 is associated with variation of hippocampal and prefrontal grey matter volumes in humans. Eur Arch Psychiatry Clin Neurosci 2013; 263:53-63. [PMID: 22580710 PMCID: PMC3560950 DOI: 10.1007/s00406-012-0320-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/22/2012] [Indexed: 12/19/2022]
Abstract
DTNBP1 is one of the most established susceptibility genes for schizophrenia, and hippocampal volume reduction is one of the major neuropathological findings in this severe disorder. Consistent with these findings, the encoded protein dysbindin-1 has been shown to be diminished in glutamatergic hippocampal neurons in schizophrenic patients. The aim of this study was to investigate the effects of two single nucleotide polymorphisms of DTNBP1 on grey matter volumes in human subjects using voxel-based morphometry. Seventy-two subjects were included and genotyped with respect to two single nucleotide polymorphisms of DTNBP1 (rs2619522 and rs1018381). All participants underwent structural magnetic resonance imaging (MRI). MRI data were preprocessed and statistically analysed using standard procedures as implemented in SPM5 (Statistical Parametric Mapping), in particular the voxel-based morphometry (VBM) toolbox. We found significant effects of the DTNBP1 SNP rs2619522 bilaterally in the hippocampus as well as in the anterior middle frontal gyrus and the intraparietal cortex. Carriers of the G allele showed significantly higher grey matter volumes in these brain regions than T/T homozygotes. Compatible with previous findings on a role of dysbindin in hippocampal functions as well as in major psychoses, the present study provides first direct in vivo evidence that the DTNBP1 SNP rs2619522 is associated with variation of grey matter volumes bilaterally in the hippocampus.
Collapse
Affiliation(s)
- S. Trost
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - B. Platz
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - J. Usher
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - H. Scherk
- Department of Psychiatry and Psychotherapy, Ameos Clinic Osnabrueck, Osnabrueck, Germany
| | - T. Wobrock
- Centre for Mental Health, County Hospitals Darmstadt-Dieburg, Groß-Umstadt, Germany
| | - S. Ekawardhani
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - J. Meyer
- Department of Neurobehavioral Genetics, University of Trier, Trier, Germany
| | - W. Reith
- Department of Neuroradiology, Saarland University, Homburg, Germany
| | - P. Falkai
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| | - O. Gruber
- Department of Psychiatry and Psychotherapy, Centre for Translational Research in Systems Neuroscience and Clinical Psychiatry, Georg August University, Goettingen, Germany
| |
Collapse
|
34
|
Watson DR, Anderson JM, Bai F, Barrett SL, McGinnity TM, Mulholland CC, Rushe TM, Cooper SJ. A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 2012; 227:91-9. [DOI: 10.1016/j.bbr.2011.10.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 01/04/2023]
|
35
|
The effects of CACNA1C gene polymorphism on spatial working memory in both healthy controls and patients with schizophrenia or bipolar disorder. Neuropsychopharmacology 2012; 37:677-84. [PMID: 22012475 PMCID: PMC3260980 DOI: 10.1038/npp.2011.242] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CACNA1C gene polymorphism (rs1006737) is a susceptibility factor for both schizophrenia (SCZ) and bipolar disorder (BP). However, its role in working memory, a cognitive function that is impaired in both diseases, is not clear. Using three samples, including healthy controls, patients with SCZ, and patients currently in manic episodes of BP, this study tested the association between the SNP rs1006737 and spatial working memory as measured by an N-back task and a dot pattern expectancy (DPX) task. Among SCZ patients and healthy controls, the clinical risk allele was associated with impaired working memory, but the association was either in opposite direction or non-significant in patients with BP. These results indicated that rs1006737 may have differential effects on working memory in different disease populations and pointed to the necessity for more studies in different patient populations.
Collapse
|
36
|
Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system. Eur Arch Psychiatry Clin Neurosci 2012; 262:23-31. [PMID: 21509595 PMCID: PMC3270260 DOI: 10.1007/s00406-011-0214-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/08/2011] [Indexed: 01/21/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and has been suggested to be involved in the pathophysiology and pathogenesis of psychotic disorders, with particular emphasis on dysfunctions of the hippocampus. The aim of the present study was to replicate and to extend prior findings of BDNF val66met genotype effects on hippocampal volume and N-acetyl aspartate (NAA) levels. Hundred and fifty-eight caucasians (66 schizophrenic, 45 bipolar, and 47 healthy subjects; 105 subjects underwent MRI and 103 MRS scanning) participated in the study and were genotyped with regard to the val66met polymorphism (rs6265) of the BDNF gene. Hippocampal volumes were determined using structural magnetic resonance imaging (MRI), and measures of biochemical markers were taken using proton magnetic resonance spectroscopy ((1)H-MRS) in the hippocampus and other brain regions. Verbal memory was assessed as a behavioral index of hippocampal function. BDNF genotype did not impact hippocampal volumes. Significant genotype effects were found on metabolic markers specifically in the left hippocampus. In particular, homozygous carriers of the met-allele exhibited significantly lower NAA/Cre and (Glu + Gln)/Cre metabolic ratios compared with val/val homozygotes, independently of psychiatric diagnoses. BDNF genotype had a numerical, but nonsignificant effect on verbal memory performance. These findings provide first in vivo evidence for an effect of the functional BDNF val66met polymorphism on the glutamate system in human hippocampus.
Collapse
|