1
|
Müller UJ, Schmalenbach LJ, Dobrowolny H, Guest PC, Schlaaff K, Mawrin C, Truebner K, Bogerts B, Gos T, Bernstein HG, Steiner J. Reduced anterior insular cortex volume in male heroin addicts: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2023; 273:1233-1241. [PMID: 36719479 PMCID: PMC9888352 DOI: 10.1007/s00406-023-01553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
We and others have observed reduced volumes of brain regions, including the nucleus accumbens, globus pallidus, hypothalamus, and habenula in opioid addiction. Notably, the insular cortex has been under increasing study in addiction, and a smaller anterior insula has been found in alcohol-addicted cases. Here, we have investigated whether similar effects occur in heroin addicts compared to healthy controls. Volumes of the anterior and posterior insula in heroin addicts (n = 14) and controls (n = 13) were assessed by morphometry of Nissl-myelin-stained serial whole-brain coronal sections. The mean relative volume of the anterior insular cortex was smaller than in non-addicted controls (3010 ± 614 *10-6 versus 3970 ± 1306 *10-6; p = 0.021). However, no significant differences in neuronal cell counts were observed. Therefore, the observed volume reduction appears to be a consequence of damaged connecting structures such as neuropil and glial cells. The findings were not confounded by age or duration of autolysis. Our results provide further evidence of structural deficits in key hubs of the addiction circuitry in heroin-dependent individuals and warrant further research in this area.
Collapse
Affiliation(s)
- Ulf J Müller
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany
| | - Lucas J Schmalenbach
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christian Mawrin
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kurt Truebner
- Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Salus Institute, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, Magdeburg, Germany.
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- German Center for Mental Health (DZP), Center for Intervention and Research On Adaptive and Maladaptive Brain Circuits Underlying, Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
- Center for Health Und Medical Prevention (CHaMP), Magdeburg, Germany.
| |
Collapse
|
2
|
Wang L, Hu F, Li W, Li Q, Li Y, Zhu J, Wei X, Yang J, Guo J, Qin Y, Shi H, Wang W, Wang Y. Relapse risk revealed by degree centrality and cluster analysis in heroin addicts undergoing methadone maintenance treatment. Psychol Med 2023; 53:2216-2228. [PMID: 34702384 DOI: 10.1017/s0033291721003937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Based on hubs of neural circuits associated with addiction and their degree centrality (DC), this study aimed to construct the addiction-related brain networks for patients diagnosed with heroin dependence undertaking stable methadone maintenance treatment (MMT) and further prospectively identify the ones at high risk for relapse with cluster analysis. METHODS Sixty-two male MMT patients and 30 matched healthy controls (HC) underwent brain resting-state functional MRI data acquisition. The patients received 26-month follow-up for the monthly illegal-drug-use information. Ten addiction-related hubs were chosen to construct a user-defined network for the patients. Then the networks were discriminated with K-means-clustering-algorithm into different groups and followed by comparative analysis to the groups and HC. Regression analysis was used to investigate the brain regions significantly contributed to relapse. RESULTS Sixty MMT patients were classified into two groups according to their brain-network patterns calculated by the best clustering-number-K. The two groups had no difference in the demographic, psychological indicators and clinical information except relapse rate and total heroin consumption. The group with high-relapse had a wider range of DC changes in the cortical-striatal-thalamic circuit relative to HC and a reduced DC in the mesocorticolimbic circuit relative to the low-relapse group. DC activity in NAc, vACC, hippocampus and amygdala were closely related with relapse. CONCLUSION MMT patients can be identified and classified into two subgroups with significantly different relapse rates by defining distinct brain-network patterns even if we are blind to their relapse outcomes in advance. This may provide a new strategy to optimize MMT.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
- Department of Nuclear Medicine, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Feng Hu
- Department of Radiology, The Hospital of Shaanxi Provincial Geology and Mineral Resources Bureau, Xi'an, P.R. China
| | - Wei Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yongbin Li
- Department of Radiology, The Second Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Jia Zhu
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Xuan Wei
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Jianxin Guo
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| | - Yue Qin
- Department of Radiology, Xi'an Daxing Hospital, Xi'an, P.R. China
| | - Hong Shi
- Department of Radiology, Xi'an No.1 Hospital, Xi'an, P.R. China
| | - Wei Wang
- Department of Radiology, Tangdu Hospital, Air Force Military Medical University, Xi'an, P.R. China
| | - Yarong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, P.R. China
| |
Collapse
|
3
|
Yan H, Shlobin NA, Jung Y, Zhang KK, Warsi N, Kulkarni AV, Ibrahim GM. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. J Neurosurg 2023; 138:337-346. [PMID: 35901682 DOI: 10.3171/2022.5.jns212548] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation. METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted. RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania. CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada.,4McMaster Medical School, Hamilton, Ontario, Canada
| | - Nathan A Shlobin
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kristina K Zhang
- 5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Nebras Warsi
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - George M Ibrahim
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
4
|
Gos T, Steiner J, Trübner K, Krzyżanowska M, Kaliszan M. Ribosomal DNA transcription is increased in the left nucleus accumbens of heroin-dependent males. Eur Arch Psychiatry Clin Neurosci 2022; 272:1603-1609. [PMID: 35567616 PMCID: PMC9106793 DOI: 10.1007/s00406-022-01423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Abstract
Opioid addiction is a worldwide problem accentuated in the USA and European countries by the COVID-19 pandemic. The nucleus accumbens (NAc) plays an outstanding neurobiological role in opioid addiction as a part of the striatum and key component of brain reward system. The striatal GABAergic medium spiny projection neurons (MSNs) are the main neuronal type in the NAc where addiction-specific synaptic plasticity occurs. The activity of ribosomal DNA (rDNA) transcription is crucial for neural plasticity and molecular studies suggest its increase in the NAc of heroin addicts. Silver-stained argyrophilic nucleolar organizer region (AgNOR) areas visualised in neuronal nuclei in paraffin-embedded brain sections are reliable morphological estimators of rDNA transcription and thus surrogate markers for the activity of brain regions. Our study revealed increased AgNOR areas in MSNs of the left NAc in 11 heroin addicts versus 11 healthy controls from the Magdeburg Brain Bank (U-test P = 0.007). No differences were observed in another investigated part of the striatum, namely the head of caudate nucleus, which is located closely to the NAc. The results were not confounded by significant differences in the age, brain volume and time of formalin fixation existing between compared groups. Our findings suggest an increased NAc activity in heroin addicts, which is consistent with human and animal experimental data.
Collapse
Affiliation(s)
- Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany.
| | - Johann Steiner
- grid.5807.a0000 0001 1018 4307Department of Psychiatry, Otto von Guericke University, Magdeburg, Germany
| | - Kurt Trübner
- grid.5718.b0000 0001 2187 5445Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Marta Krzyżanowska
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Michał Kaliszan
- grid.11451.300000 0001 0531 3426Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| |
Collapse
|
5
|
The role of the nucleus accumbens and ventral pallidum in feeding and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110394. [PMID: 34242717 DOI: 10.1016/j.pnpbp.2021.110394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 02/04/2023]
Abstract
Obesity is a growing global epidemic that stems from the increasing availability of highly-palatable foods and the consequent enhanced calorie consumption. Extensive research has shown that brain regions that are central to reward seeking modulate feeding and evidence linking obesity to pathology in such regions have recently started to accumulate. In this review we focus on the contribution of two major interconnected structures central to reward processing, the nucleus accumbens and the ventral pallidum, to obesity. We first review the known literature linking these structures to feeding behavior, then discuss recent advances connecting pathology in the nucleus accumbens and ventral pallidum to obesity, and finally examine the similarities and differences between drug addiction and obesity in the context of these two structures. The understanding of how pathology in brain regions involved in reward seeking and consumption may drive obesity and how mechanistically similar obesity and addiction are, is only now starting to be revealed. We hope that future research will advance knowledge in the field and open new avenues to studying and treating obesity.
Collapse
|
6
|
Rusche T, Kaufmann J, Voges J. Nucleus accumbens projections: Validity and reliability of fiber reconstructions based on high-resolution diffusion-weighted MRI. Hum Brain Mapp 2021; 42:5888-5910. [PMID: 34528323 PMCID: PMC8596959 DOI: 10.1002/hbm.25657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical effects of deep brain stimulation are largely mediated by the activation of myelinated axons. Hence, increasing attention has been paid in the past on targeting white matter tracts in addition to gray matter. Aims of the present study were: (i) visualization of discrete afferences and efferences of the nucleus accumbens (NAc), supposed to be a major hub of neural networks relating to mental disorders, using probabilistic fiber tractography and a data driven approach, and (ii) validation of the applied methodology for standardized routine clinical applications. MR‐data from 11 healthy subjects and 7 measurement sessions each were acquired on a 3T MRI‐scanner. For probabilistic fiber tracking the NAc as a seed region and the medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), amygdala (AMY), hippocampus (HPC), dorsomedial thalamus (dmT) and ventral tegmental area (VTA) as target regions were segmented for each subject and both hemispheres. To quantitatively assess the reliability and stability of the reconstructions, we filtered and clustered the individual fiber‐tracts (NAc to target) for each session and subject and performed a point‐by‐point calculation of the maximum cluster distances for intra‐subject comparison. The connectivity patterns formed by the obtained fibers were in good concordance with published data from tracer and/or fiber‐dissection studies. Furthermore, the reliability assessment of the (NAc to target)‐fiber‐tracts yielded to high correlations between the obtained clustered‐tracts. Using DBS with directional lead technology, the workflow elaborated in this study may guide selective electrical stimulation of NAc projections.
Collapse
Affiliation(s)
- Thilo Rusche
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Radiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
7
|
Müller UJ, Ahrens M, Vasilevska V, Dobrowolny H, Schiltz K, Schlaaff K, Mawrin C, Frodl T, Bogerts B, Gos T, Truebner K, Bernstein HG, Steiner J. Reduced habenular volumes and neuron numbers in male heroin addicts: a post-mortem study. Eur Arch Psychiatry Clin Neurosci 2021; 271:835-845. [PMID: 33001272 DOI: 10.1007/s00406-020-01195-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
The Habenula is increasingly being investigated in addiction. Reduced volumes of other relevant brain regions in addiction, such as nucleus accumbens, globus pallidus and hypothalamus have been reported. Reduced volumes of the habenula as well as reduced neuronal cell count in the habenula have also been reported in mood disorders and an overlap between mood disorders and addiction is clinically widely recognized. Thus, our aim was to investigate possible volume and neuronal cell count differences in heroin addicts compared to healthy controls. Volumes of the medial (MHB) and lateral habenula (LHB) in heroin addicts (n = 12) and healthy controls (n = 12) were assessed by morphometry of 20 µm serial whole brain sections. Total brain volume was larger in the heroin group (mean 1466.6 ± 58.5 cm3 vs. mean 1331.5 ± 98.8 cm3), possibly because the heroin group was about 15 years younger (p = 0.001). Despite larger mean whole brain volume, the mean relative volume of the MHB was smaller than in healthy non-addicted controls (6.94 ± 2.38 × 10-6 vs.10.64 ± 3.22 × 10-6; p = 0.004). A similar finding was observed regarding relative volumes of the LHB (46.62 ± 10.90 × 10-6 vs. 63.05 ± 16.42 × 10-6 p = 0.009). In parallel, neuronal cell numbers were reduced in the MHB of heroin-addicted subjects (395,966 ± 184,178 vs. 644,149 ± 131,140; p < 0.001). These findings were not significantly confounded by age and duration of autolysis. Our results provide further evidence for brain-structural deficits in heroin addiction.
Collapse
Affiliation(s)
- Ulf J Müller
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany.
- Forensic Psychiatric State Hospital of Saxony-Anhalt, Stendal-Uchtspringe, Germany.
| | - Moritz Ahrens
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Kolja Schiltz
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Konstantin Schlaaff
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Christian Mawrin
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Salus Institute, Magdeburg, Germany
| | - Tomasz Gos
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Kurt Truebner
- Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.
- Translational Psychiatry Laboratory, University of Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
8
|
Hegedüs P, Heckenast J, Hangya B. Differential recruitment of ventral pallidal e-types by behaviorally salient stimuli during Pavlovian conditioning. iScience 2021; 24:102377. [PMID: 33912818 PMCID: PMC8066429 DOI: 10.1016/j.isci.2021.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 10/25/2022] Open
Abstract
The ventral pallidum (VP) is interfacing striatopallidal and limbic circuits, conveying information about salience and valence crucial to adjusting behavior. However, how VP neuron populations with distinct electrophysiological properties (e-types) represent these variables is not fully understood. Therefore, we trained mice on probabilistic Pavlovian conditioning while recording the activity of VP neurons. Many VP neurons responded to punishment (54%), reward (48%), and outcome-predicting auditory stimuli (32%), increasingly differentiating distinct outcome probabilities through learning. We identified e-types based on the presence of bursts or fast rhythmic discharges and found that non-bursting, non-rhythmic neurons were the most sensitive to reward and punishment. Some neurons exhibited distinct responses of their bursts and single spikes, suggesting a multiplexed coding scheme in the VP. Finally, we demonstrate synchronously firing neuron assemblies, particularly responsive to reinforcing stimuli. These results suggest that electrophysiologically defined e-types of the VP differentially participate in transmitting reinforcement signals during learning.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Julia Heckenast
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
| |
Collapse
|
9
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
10
|
Fitting S, McRae M, Hauser KF. Opioid and neuroHIV Comorbidity - Current and Future Perspectives. J Neuroimmune Pharmacol 2020; 15:584-627. [PMID: 32876803 PMCID: PMC7463108 DOI: 10.1007/s11481-020-09941-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
With the current national opioid crisis, it is critical to examine the mechanisms underlying pathophysiologic interactions between human immunodeficiency virus (HIV) and opioids in the central nervous system (CNS). Recent advances in experimental models, methodology, and our understanding of disease processes at the molecular and cellular levels reveal opioid-HIV interactions with increasing clarity. However, despite the substantial new insight, the unique impact of opioids on the severity, progression, and prognosis of neuroHIV and HIV-associated neurocognitive disorders (HAND) are not fully understood. In this review, we explore, in detail, what is currently known about mechanisms underlying opioid interactions with HIV, with emphasis on individual HIV-1-expressed gene products at the molecular, cellular and systems levels. Furthermore, we review preclinical and clinical studies with a focus on key considerations when addressing questions of whether opioid-HIV interactive pathogenesis results in unique structural or functional deficits not seen with either disease alone. These considerations include, understanding the combined consequences of HIV-1 genetic variants, host variants, and μ-opioid receptor (MOR) and HIV chemokine co-receptor interactions on the comorbidity. Lastly, we present topics that need to be considered in the future to better understand the unique contributions of opioids to the pathophysiology of neuroHIV. Graphical Abstract Blood-brain barrier and the neurovascular unit. With HIV and opiate co-exposure (represented below the dotted line), there is breakdown of tight junction proteins and increased leakage of paracellular compounds into the brain. Despite this, opiate exposure selectively increases the expression of some efflux transporters, thereby restricting brain penetration of specific drugs.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3270, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 1217 East Marshall Street, Richmond, VA, 23298-0613, USA.
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, 203 East Cary Street, Richmond, VA, 23298-0059, USA.
| |
Collapse
|
11
|
Wang J, Zhang Y, Zhang H, Wang K, Wang H, Qian D, Qi S, Yang K, Long H. Nucleus accumbens shell: A potential target for drug-resistant epilepsy with neuropsychiatric disorders. Epilepsy Res 2020; 164:106365. [PMID: 32460115 DOI: 10.1016/j.eplepsyres.2020.106365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
The nucleus accumbens (NAc) is an important component of the ventral striatum, involving motivational and emotional processes, limbic-motor interfaces. Recently, experimental and clinical data have shown that NAc, particularly NAc shell (NAcs), participates in ictogenesis and epileptogensis in drug-resistant epilepsy (DRE). Therefore, we summarize the existing literature on NAcs and potential role in epilepsy, from the bench to the clinic. Connection abnormalities between NAcs and remainings, degeneration of NAc neurons, and an aberrant distribution of neuroactive substances have been reported in patients with DRE. These changes may be underlying the pathophysiological mechanism of the involvement of NAcs in DRE. Furthermore, alterations in NAcs may also be involved in neuropsychiatric disorders in patients with DRE. These observational studies demonstrate the multiple properties of NAcs and the complex relationship between the limbic system and DRE with neuropsychiatric disorders. NAcs can be a potential target for DBS and stereotactic lesioning to manage DRE with neuropsychiatric disorders. Future studies are warranted to further clarify the role of NAcs in epilepsy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China.
| | - Yuzhen Zhang
- The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China
| | - Henghui Zhang
- The First Clinical Medicine College, Southern Medical University, China; Neural Networks Surgery Team, Southern Medical University, China
| | - Kewan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Hongxiao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Dadi Qian
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China
| | - Kaijun Yang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China.
| | - Hao Long
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, China; The First Clinical Medicine College, Southern Medical University, China.
| |
Collapse
|
12
|
Müller UJ, Mawrin C, Frodl T, Dobrowolny H, Busse S, Bernstein HG, Bogerts B, Truebner K, Steiner J. Reduced volumes of the external and internal globus pallidus in male heroin addicts: a postmortem study. Eur Arch Psychiatry Clin Neurosci 2019; 269:317-324. [PMID: 30173319 DOI: 10.1007/s00406-018-0939-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/22/2018] [Indexed: 01/11/2023]
Abstract
Deep brain stimulation (DBS) of the globus pallidus internus was recently proposed as a potential new treatment target for opioid addiction. DBS requires computer-assisted-3D planning to implant the stimulation electrode precisely. As volumes of brain regions may differ in addiction compared to healthy controls, our aim was to investigate possible volume differences in addicts compared to healthy controls. Volumes of the globus pallidus externus (PE) and internus (PI) in heroin addicts (n = 14) and healthy controls (n = 12) were assessed using morphometry of serial whole-brain sections. Total brain volume was larger in the heroin group (mean 1479 ± 62 cm3 vs. mean 1352 ± 103 cm3), as the heroin group was more than 10 years younger (p = 0.001). Despite larger mean whole brain volume, the mean relative volume of the PE and PI was smaller in addicted subjects compared to healthy controls (PE 0.658 ± 0.183 × 10-3 vs. 0.901 ± 0.284 × 10-3; ANOVA F(1, 24) = 6.945, p = 0.014, η2 = 0.224; PI 0.253 ± 0.095 × 10-3 vs. 0.345 ± 0.107 × 10-3; ANOVA F(1, 24) = 5.374, p = 0.029, η2 = 0.183). These findings were not significantly confounded by age, duration of autolysis, and fixation time. Our results provide further evidence for structural and not only functional deficits of the globus pallidus in addiction. In the context of previous studies, our findings support the idea of shared pathophysiological processes between comorbid depression and impulsivity in opioid addiction.
Collapse
Affiliation(s)
- Ulf J Müller
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany. .,Department of Psychiatry and Psychotherapy, Saarland University, 66421, Homburg, Germany.
| | - Christian Mawrin
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Neuropathology, University of Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany
| | - Hans-Gert Bernstein
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Kurt Truebner
- Institute of Legal Medicine, University of Duisburg-Essen, Essen, Germany
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, University of Magdeburg, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
13
|
Ross DE, Seabaugh J, Cooper L, Seabaugh J. NeuroQuant® and NeuroGage® reveal effects of traumatic brain injury on brain volume. Brain Inj 2018; 32:1437-1441. [PMID: 29953249 DOI: 10.1080/02699052.2018.1489980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This report describes the case of a 58-year-old man with moderate traumatic brain injury (TBI) and pre-accident brain disorders who had multiple persistent neuropsychiatric symptoms. NeuroQuant® 2.0 and NeuroGage® 2.0 MRI brain volume analyses were used during the chronic stage of injury (> 1 year after injury) to help understand the effects of the TBI on his brain volume. NeuroQuant® showed widespread cross-sectional atrophy, especially in the frontal and temporal lobes, consistent with encephalomalacia seen on the MRIs. Several of his clinical symptoms were consistent with the volume abnormalities. NeuroGage® longitudinal analyses of volume change from the time 1 to time 2 magnetic resonance imaging showed abnormally rapid atrophy and ventricular enlargement. The high rates of volume change were much more consistent with the relatively recent effects of TBI than with effects of the much more chronic pre-accident brain disorders.
Collapse
Affiliation(s)
- David E Ross
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA.,c Department of Psychiatry, Virginia Commonwealth University , Richmond , VA, USA
| | - John Seabaugh
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA
| | - Leah Cooper
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA.,d Neuroscience, Virginia Polytechnic Institute and State University , Blacksburg , VA, USA
| | - Jan Seabaugh
- a Virginia Institute of Neuropsychiatry , Midlothian , VA , USA.,b NeuroGage LLC , Midlothian , VA , USA
| |
Collapse
|
14
|
Total hypothalamic volume is reduced in postmortem brains of male heroin addicts. Eur Arch Psychiatry Clin Neurosci 2018; 268:243-248. [PMID: 28534187 DOI: 10.1007/s00406-017-0809-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/17/2017] [Indexed: 01/26/2023]
Abstract
The hypothalamus is at the core of the stress responses systems of the brain. Most interestingly, even though changes of HPA-function have been observed in opiate addiction not much is known about structural changes of the hypothalamus. Volumes of hypothalamus in heroin addicts (n = 14) and healthy controls (n = 12) were assessed by using morphometry of serial whole-brain sections. Total brain volume was larger in the heroin group (mean 1478.85 ± 62.34 cm3 vs. mean 1352.38 ± 103.24 cm3), as the heroin group was more than 10 years younger (p = 0.001). Thus, diagnosis-related effects in the hypothalamus were assessed using the hypothalamus volume relative to whole brain volume showing reduced volumes of the hypothalamus in the heroin group (0.201 ± 0.074 × 10-3 vs. 0.267 ± 0.048 × 10-3; ANOVA: F(1,23) = 6.211, p = 0.020) with a strong hemispheric effect (left side: about 20% reduction 0.209 ± 0.080 × 10-3 vs. 0.264 ± 0.049 × 10-3; F = 4.109; p = 0.054; right side: about 27% reduction, 0.198 ± 0.069 × 10-3 vs. 0.271 ± 0.050 × 10-3; F = -8.800; p = 0.007). Our results provide further evidence for structural and not only functional deficits of the hypothalamus in addiction.
Collapse
|
15
|
Mavridis IN. Nucleus accumbens dimensions and surgical precision. Eur Arch Psychiatry Clin Neurosci 2016; 266:579-80. [PMID: 26596848 DOI: 10.1007/s00406-015-0656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Ioannis N Mavridis
- Department of Neurosurgery, 'K.A.T.-N.R.C.' General Hospital of Attica, Nikis Str. 2, Kifissia, 14561, Athens, Greece.
| |
Collapse
|
16
|
Reich-Erkelenz D, Schmitt A, Falkai P. Unravelling basic mechanisms in addiction and neuropsychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2015; 265:633-5. [PMID: 26459020 DOI: 10.1007/s00406-015-0645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nußbaumstr. 7, 80336, Munich, Germany
| |
Collapse
|