Zhao X, Kotha S, Nayyar D, Ma X, Lilly L, Castel H, Gupta S. Physiologic changes in the hepatopulmonary syndrome before and after liver transplant: A longitudinal and predictor analysis.
Hepatology 2024;
79:636-649. [PMID:
37732952 PMCID:
PMC10871618 DOI:
10.1097/hep.0000000000000605]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND AND AIMS
Hepatopulmonary syndrome (HPS) is a common complication of liver disease defined by abnormal oxygenation and intrapulmonary vascular dilatation, treated with liver transplantation. Little is known about changes in HPS physiological parameters over time. We sought to describe baseline clinical and physiological characteristics in HPS and their relationships, temporal changes in physiological parameters before and after transplant, and predictors of changes in oxygenation.
APPROACH AND RESULTS
This was a retrospective cohort study in the Canadian HPS Program (n = 132). Rates of change after diagnosis were: -3.7 (-6.4, -0.96) mm Hg/year for partial pressure of arterial oxygen (PaO 2 ); -26 (-96, 44) m/year for 6-minute walk distance, and 3.3% (-6.6, -0.011) predicted/year for diffusion capacity. Noninvasive shunt of ≥ 20% predicted a slower PaO 2 decline by 0.88 (0.36, 1.4) mm Hg/month. We identified 2 PaO 2 deterioration classes-"very severe disease, slow decliners" (PaO 2 45.0 mm Hg; -1.0 mm Hg/year); and "moderate disease, steady decliners" (PaO 2 65.5 mm Hg; -2.5 mm Hg/year). PaO 2 increased by 6.5 (5.3, 7.7) mm Hg/month in the first year after transplant. The median time to normalization was 149 (116, 184) days. Posttransplant improvement in PaO 2 was 2.5 (0.1, 4.9) mm Hg/month faster for every 10 mm Hg greater pretransplant orthodeoxia.
CONCLUSIONS
We present a large and long longitudinal data analysis in HPS. In addition to rates of physiological decline and improvement before and after liver transplantation, we present novel predictors of PaO 2 decline and improvement rates. Our findings enhance our understanding of the natural history of HPS and provide pathophysiologic clues. Importantly, they may assist providers in prognostication and prioritization before and after transplant.
Collapse