1
|
Huang D, Zhang L, Liu Y, Wang J, Zhang J, Baines KJ, Liu G, Hsu ACY, Wang F, Chen Z, Oliver BG, Xie M, Qin L, Liu D, Wan H, Luo F, Li W, Wang G, Gibson PG. Activated non-neuronal cholinergic system correlates with non-type 2 inflammation and exacerbations in severe asthma. Ann Allergy Asthma Immunol 2024; 133:64-72.e4. [PMID: 38499061 DOI: 10.1016/j.anai.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Non-neuronal cholinergic system (NNCS) contributes to various inflammatory airway diseases. However, the role of NNCS in severe asthma (SA) remains largely unexplored. OBJECTIVE To explore airway NNCS in SA. METHODS In this prospective cohort study based on the Australasian Severe Asthma Network in a real-world setting, patients with SA (n = 52) and non-SA (n = 104) underwent clinical assessment and sputum induction. The messenger RNA (mRNA) levels of NNCS components and proinflammatory cytokines in the sputum were detected using real-time quantitative polymerase chain reaction, and the concentrations of acetylcholine (Ach)-related metabolites were evaluated using liquid chromatography coupled with tandem mass spectrometry. Asthma exacerbations were prospectively investigated during the next 12 months. The association between NNCS and future asthma exacerbations was also analyzed. RESULTS Patients with SA were less controlled and had worse airway obstruction, a lower bronchodilator response, higher doses of inhaled corticosteroids, and more add-on treatments. The sputum mRNA levels of NNCS components, such as muscarinic receptors M1R-M5R, OCT3, VACHT, and ACHE; proinflammatory cytokines; and Ach concentration in the SA group were significantly higher than those in the non-SA group. Furthermore, most NNCS components positively correlated with non-type (T) 2 inflammatory profiles, such as sputum neutrophils, IL8, and IL1B. In addition, the mRNA levels of sputum M2R, M3R, M4R, M5R, and VACHT were independently associated with an increased risk of moderate-to-severe asthma exacerbations. CONCLUSION This study indicated that the NNCS was significantly activated in SA, leading to elevated Ach and was associated with clinical features, non-T2 inflammation, and future exacerbations of asthma, highlighting the potential role of the NNCS in the pathogenesis of SA. CLINICAL TRIAL REGISTRATION ChiCTR-OOC-16009529 (http://www.chictr.org.cn).
Collapse
Affiliation(s)
- Dan Huang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Li Zhang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Ying Liu
- The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Ji Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Katherine J Baines
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia
| | - Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia; Centre for Inflammation, Centenary Institute, Camperdown, NSW, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia; Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Fang Wang
- Department of Pathogen Biology, Basic Medical College, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Disease, Fudan University, Shanghai, People's Republic of China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia; Woolcock Institute of Medical Research, The University of Sydney, NSW, Australia
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Qin
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Respiratory Microbiome Laboratory, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, People's Republic of China; The State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, People's Republic of China; Laboratory of Pulmonary Immunology and inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, People's Republic of China.
| | - Peter G Gibson
- Priority Research Center for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Callaghan, Australia; National Health and Medical Research Council Center for Research Excellence in Severe Asthma and Treatable Traits, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|