1
|
Gerken LRH, Beckers C, Brugger BA, Kissling VM, Gogos A, Wee S, Lukatskaya MR, Schiefer H, Plasswilm L, Pruschy M, Herrmann IK. Catalytically Active Ti-Based Nanomaterials for Hydroxyl Radical Mediated Clinical X-Ray Enhancement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406198. [PMID: 39501581 DOI: 10.1002/advs.202406198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/02/2024] [Indexed: 12/19/2024]
Abstract
Nanoparticle radioenhancement offers a promising strategy for augmenting radiotherapy by locally increasing radiation damage to tumor tissue. While past research has predominantly focused on nanomaterials with high atomic numbers, such as Au and HfO2, recent work has revealed that their radioenhancement efficacy decreases considerably when using clinically relevant megavoltage X-rays as opposed to the orthovoltage X-rays typically employed in research settings. Here, radiocatalytically active Ti-based nanomaterials for clinical X-ray therapy settings are designed. A range of candidate materials, including TiO2 (optionally decorated with Ag or Pt nanoseeds), Ti-containing metal-organic frameworks (MOFs), and 2D Ti-based carbides known as Ti3C2Tx MXenes, is investigated. It is demonstrated that these titanium-based candidates remain consistently performant across a wide energy spectrum, from orthovoltage to megavoltage. This sustained performance is attributed to the catalytic generation of reactive oxygen species, moving beyond the simple physical dose enhancements associated with photoelectric effects. Beyond titania, emergent materials like titanium-based MOFs and MXenes exhibit encouraging results, achieving dose-enhancement factors of up to three in human soft tissue sarcoma cells. Notably, these enhancements are absent in healthy human fibroblast cells under similar conditions of particle uptake, underscoring the selective impact of titanium-based materials in augmenting radiotherapy across the clinically relevant spectral range.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Claire Beckers
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Beatrice A Brugger
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Shianlin Wee
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Hans Schiefer
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, St. Gallen, CH-9007, Switzerland
| | - Ludwig Plasswilm
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, St. Gallen, CH-9007, Switzerland
- Department of Radiation Oncology, Inselspital University Hospital, Bern, 3010, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, Balgrist University Hospital, Forchstrasse 340, Zurich, 8008, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
2
|
Hirayama R, Ito A, Uzawa A, Matsumoto Y, Noguchi M, Li H, Suzuki M, Ando K, Okayasu R, Hasegawa S, Furusawa Y. Lethal DNA Lesions Caused by Direct and Indirect Actions of X rays are Repaired via Different DSB Repair Pathways under Aerobic and Anoxic Conditions. Radiat Res 2021; 195:441-451. [PMID: 33721021 DOI: 10.1667/rade-20-00235.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/04/2021] [Indexed: 11/03/2022]
Abstract
We examined lethal damages of X rays induced by direct and indirect actions, in terms of double-strand break (DSB) repair susceptibility using two kinds of repair-deficient Chinese hamster ovary (CHO) cell lines. These CHO mutants (51D1 and xrs6) are genetically deficient in one of the two important DNA repair pathways after genotoxic injury [homologous recombination (HR) and non-homologous end binding (NHEJ) pathways, respectively]. The contribution of indirect action on cell killing can be estimated by applying the maximum level of dimethylsulfoxide (DMSO) to get rid of OH radicals. To control the proportion of direct and indirect actions in lethal damage, we irradiated CHO mutant cells under aerobic and anoxic conditions. The contributions of indirect action on HR-defective 51D1 cells were 76% and 57% under aerobic and anoxic conditions, respectively. Interestingly, these percentages were similar to those of the wild-type cells even if the radiosensitivity was different. However, the contributions of indirect action to cell killing on NHEJ-defective xrs6 cells were 52% and 33% under aerobic and anoxic conditions, respectively. Cell killing by indirect action was significantly affected by the oxygen concentration and the DSB repair pathways but was not correlated with radiosensitivity. These results suggest that the lethal damage induced by direct action is mostly repaired by NHEJ repair pathway since killing of NHEJ-defective cells has significantly higher contribution by the direct action. In other words, the HR repair pathway may not effectively repair the DSB by direct action in place of the NHEJ repair pathway. We conclude that the type of DSB produced by direct action is different from that of DSB induced by indirect action.
Collapse
Affiliation(s)
- Ryoichi Hirayama
- Departments of a Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi Ito
- School of Engineering, Tokai University, Kanagawa, Japan
| | - Akiko Uzawa
- Departments of a Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Miho Noguchi
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Ibaraki, Japan
| | - Huizi Li
- Departments of a Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Motofumi Suzuki
- Departments of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido, Japan
| | - Koichi Ando
- Heavy Ion Medical Center, Gunma University, Gunma, Japan
| | - Ryuichi Okayasu
- Departments of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Christian Academy in Japan, Tokyo, Japan
| | - Sumitaka Hasegawa
- Departments of a Charged Particle Therapy Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiya Furusawa
- Departments of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
3
|
Hirayama R, Ito A, Noguchi M, Matsumoto Y, Uzawa A, Kobashi G, Okayasu R, Furusawa Y. OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect. Radiat Res 2013; 180:514-23. [PMID: 24138483 DOI: 10.1667/rr13368.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We examined OH radical-mediated indirect actions from X irradiation on cell killing in wild-type Chinese hamster ovary cell lines (CHO and AA8) under oxic and hypoxic conditions, and compared the contribution of direct and indirect actions under both conditions. The contribution of indirect action on cell killing can be estimated from the maximum degree of protection by dimethylsulfoxide, which suppresses indirect action by quenching OH radicals without affecting the direct action of X rays on cell killing. The contributions of indirect action on cell killing of CHO cells were 76% and 50% under oxic and hypoxic conditions, respectively, and those for AA8 cells were 85% and 47%, respectively. Therefore, the indirect action on cell killing was enhanced by oxygen during X irradiation in both cell lines tested. Oxygen enhancement ratios (OERs) at the 10% survival level (D10 or LD90) for CHO and AA8 cells were 2.68 ± 0.15 and 2.76 ± 0.08, respectively. OERs were evaluated separately for indirect and direct actions, which gave the values of 3.75 and 2.01 for CHO, and 4.11 and 1.32 for AA8 cells, respectively. Thus the generally accepted OER value of ∼3 is best understood as the average of the OER values for both indirect and direct actions. These results imply that both indirect and direct actions on cell killing require oxygen for the majority of lethal DNA damage, however, oxygen plays a larger role in indirect than for direct effects. Conversely, the lethal damage induced by the direct action of X rays are less affected by oxygen concentration.
Collapse
|
4
|
Kashino G, Liu Y, Suzuki M, Masunaga SI, Kinashi Y, Ono K, Tano K, Watanabe M. An alternative mechanism for radioprotection by dimethyl sulfoxide; possible facilitation of DNA double-strand break repair. JOURNAL OF RADIATION RESEARCH 2010; 51:733-40. [PMID: 21116101 DOI: 10.1269/jrr.09106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The radioprotective effects of dimethyl sulfoxide (DMSO) have been known for many years, and the suppression of hydroxyl (OH) radicals induced by ionizing radiation has been thought to be the main cause of this effect. However, the DMSO concentration used was very high, and might be toxic, in earlier studies. In the present study, we administered a lower, non-toxic concentration (0.5%, i.e., 64 mM) of DMSO before irradiation and examined its radioprotective effects. Colony formation assay and micronucleus assay showed significant radioprotective effects in CHO, but not in xrs5, which is defective in the repair function of DNA double-strand breaks. The levels of phosphorylated H2AX and the formation of 53BP1 foci 15 minutes after irradiation, which might reflect initial DNA double-strand breaks, in DMSO-treated CHO cells were similar to those in non-treated cells, suggesting that the radioprotective effects were not attributable to the suppression of general indirect action in the lower concentration of DMSO. On the other hand, 2 hours after irradiation, the average number of 53BP1 foci, which might reflect residual DNA double-strand breaks, was significantly decreased in DMSO-treated CHO cells compared to non-treated cells. The results indicated that low concentration of DMSO exerts radioprotective effects through the facilitation of DNA double-strand break repair rather than through the suppression of indirect action.
Collapse
Affiliation(s)
- Genro Kashino
- Laboratory of Radiation Biology, Research Reactor Institute, Kyoto University, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|