1
|
Lampe N, Karamitros M, Breton V, Brown JMC, Sakata D, Sarramia D, Incerti S. Corrigendum to "Mechanistic DNA damage simulations in Geant4-DNA part 2: Electron and proton damage in a bacterial cell" [Phys. Medica 48 (2018) 146-155]. Phys Med 2025; 131:104913. [PMID: 39952887 DOI: 10.1016/j.ejmp.2025.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Affiliation(s)
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Optical Sciences Centre, Department of Physics and Astronomy, Swinburne University of Technology, Melbourne, Australia
| | - Dousatsu Sakata
- School of Allied Health Sciences, Faculty of Medicine, Osaka University, Japan
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS, LP2I, UMR-5797, F-33170 Gradignan, France.
| |
Collapse
|
2
|
Gao Y, Wang X, Cloutier P, Zheng Y, Sanche L. Oxygen Effect on 0-30 eV Electron Damage to DNA Under Different Hydration Levels: Base and Clustered Lesions, Strand Breaks and Crosslinks. Molecules 2024; 29:6033. [PMID: 39770123 PMCID: PMC11680046 DOI: 10.3390/molecules29246033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Studies on radiosensitization of biological damage by O2 began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (GLEE (O2)) and 1.5 keV X-rays (GX(O2)) under oxygen at atmospheric pressure. The experiments are performed in a chamber, under humidity levels ranging from 2.5 to 33 water molecules/base. Photoelectrons from 0 to 30 eV are produced by X-rays incident on a tantalum substrate covered with DNA. Damage yields are measured by electrophoresis as a function of X-ray fluence. The oxygen enhancement ratio GLEE(O2)/GLEE(N2), which lies around 2 for potentially lethal cluster lesions, is similar to that found with cells. The average ratio, GLEE(O2)/GX(O2), of 12 for cluster lesions and crosslinks strongly suggest that DNA damages that harm cells are much more likely to be created by LEEs than any other initial species generated by X-rays in the presence of O2.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
3
|
Gao Y, Dong Y, Wang X, Su W, Cloutier P, Zheng Y, Sanche L. Comparisons between the Direct and Indirect Effect of 1.5 keV X-rays and 0-30 eV Electrons on DNA: Base Lesions, Stand Breaks, Cross-Links, and Cluster Damages. J Phys Chem B 2024; 128:11041-11053. [PMID: 39453992 DOI: 10.1021/acs.jpcb.4c02799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The interaction of low energy electrons (LEEs; 1-30 eV) with genomic material can induce multiple types of damage that may cause the loss of genetic information, mutations, genome instability, and cell death. For all damages measurable by electrophoresis, we provide the first complete set of G-values (yield of a specific product per energy deposited) induced in plasmid DNA by the direct and indirect effects of LEEs (GLEE) and 1.5 keV X-rays (GX) under identical conditions. Low energy photoelectrons are produced via X-rays incident on a tantalum (Ta) substrate covered with DNA and placed in a chamber filled with nitrogen at atmospheric pressure, under four different humidity levels, ranging from dry conditions to full hydration (Γ = 2.5 to Γ = 33, where Γ is the number of water molecules/nucleotide). Damage yields are measured as a function of X-ray fluence and humidity. GLEE values are between 2 and 27 times larger than those for X-rays. At Γ = 2.5 and 33, GLEE values for double strand breaks are 27 and 16 times larger than GX, respectively. The indirect effect contributes ∼50% to the total damage. These G-values allow quantification of potentially lethal lesions composed of strand breaks and/or base damages in the presence of varying amounts of water, i.e., closer to cellular conditions.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yanfang Dong
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 47100, P. R. China
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Wenyue Su
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
4
|
D-Kondo N, Masilela TAM, Shin WG, Faddegon B, LaVerne J, Schuemann J, Ramos-Mendez J. Modeling the oxygen effect in DNA strand break induced by gamma-rays with TOPAS-nBio. Phys Med Biol 2024; 69:10.1088/1361-6560/ad87a7. [PMID: 39413818 PMCID: PMC12054022 DOI: 10.1088/1361-6560/ad87a7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/16/2024] [Indexed: 10/18/2024]
Abstract
Objective.To present and validate a method to simulate from first principles the effect of oxygen on radiation-induced double-strand breaks (DSBs) using the Monte Carlo Track-structure code TOPAS-nBio.Approach.Two chemical models based on the oxygen fixation hypothesis (OFH) were developed in TOPAS-nBio by considering an oxygen adduct state of DNA and creating a competition kinetic mechanism between oxygen and the radioprotective molecule WR-1065. We named these models 'simple' and 'detailed' due to the way they handle the hydrogen abstraction pathways. We used the simple model to obtain additional information for the •OH-DNA hydrogen abstraction pathway probability for the detailed model. These models were calibrated and compared with published experimental data of linear and supercoiling fractions obtained with R6K plasmids, suspended in dioxane as a hydroxyl scavenger, and irradiated with137Cs gamma-rays. The reaction rates for WR-1065 and O2with DNA were taken from experimental works. Single-Strand Breaks (SSBs) and DSBs as a function of the dose for a range of oxygen concentrations [O2] (0.021%-21%) were obtained. Finally, the hypoxia reduction factor (HRF) was obtained from DSBs.Main Results.Validation results followed the trend of the experimental within 12% for the supercoiled and linear plasmid fractions for both models. The HRF agreed with measurements obtained with137Cs and 200-280 kVp x-ray within experimental uncertainties. However, the HRF at an oxygen concentration of 2.1% overestimated experimental results by a factor of 1.7 ± 0.1. Increasing the concentration of WR-1065 from 1 mM to 10-100 mM resulted in a HRF difference of 0.01, within the 8% statistical uncertainty between TOPAS-nBio and experimental data. This highlights the possibility of using these chemical models to recreate experimental HRF results.Significance.Results support the OFH as a leading cause of oxygen radio-sensitization effects given a competition between oxygen and chemical DNA repair molecules like WR-1065.
Collapse
Affiliation(s)
- Naoki D-Kondo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Thongchai A. M. Masilela
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Wook-Geun Shin
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| | - Jay LaVerne
- Radiation Laboratory and Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN, 46556, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, United States of America
| | - Jose Ramos-Mendez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94115, United States of America
| |
Collapse
|
5
|
Beaudier P, Zein SA, Chatzipapas K, Ngoc Tran H, Devès G, Plawinski L, Liénard R, Dupuy D, Barberet P, Incerti S, Gobet F, Seznec H. Quantitative analysis of dose dependent DNA fragmentation in dry pBR322 plasmid using long read sequencing and Monte Carlo simulations. Sci Rep 2024; 14:18650. [PMID: 39134627 PMCID: PMC11319478 DOI: 10.1038/s41598-024-69406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Exposure to ionizing radiation can induce genetic aberrations via unrepaired DNA strand breaks. To investigate quantitatively the dose-effect relationship at the molecular level, we irradiated dry pBR322 plasmid DNA with 3 MeV protons and assessed fragmentation yields at different radiation doses using long-read sequencing from Oxford Nanopore Technologies. This technology applied to a reference DNA model revealed dose-dependent fragmentation, as evidenced by read length distributions, showing no discernible radiation sensitivity in specific genetic sequences. In addition, we propose a method for directly measuring the single-strand break (SSB) yield. Furthermore, through a comparative study with a collection of previous works on dry DNA irradiation, we show that the irradiation protocol leads to biases in the definition of ionizing sources. We support this scenario by discussing the size distributions of nanopore sequencing reads in the light of Geant4 and Geant4-DNA simulation toolkit predictions. We show that integrating long-read sequencing technologies with advanced Monte Carlo simulations paves a promising path toward advancing our comprehension and prediction of radiation-induced DNA fragmentation.
Collapse
Affiliation(s)
- Pierre Beaudier
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
- CNRS, INSERM, ARNA, UMR5320, U1212, Univ. Bordeaux, 33000, Bordeaux, France
| | - Sara A Zein
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | | | - Hoang Ngoc Tran
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Guillaume Devès
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | | | - Rémy Liénard
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Denis Dupuy
- CNRS, INSERM, ARNA, UMR5320, U1212, Univ. Bordeaux, 33000, Bordeaux, France
| | | | | | - Franck Gobet
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France
| | - Hervé Seznec
- CNRS, LP2iB, UMR 5797, Univ. Bordeaux, 33170, Gradignan, France.
| |
Collapse
|
6
|
Sala L, Zerolová A, Vizcaino V, Mery A, Domaracka A, Rothard H, Boduch P, Pinkas D, Kocišek J. Ion beam processing of DNA origami nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:207-214. [PMID: 38379932 PMCID: PMC10877082 DOI: 10.3762/bjnano.15.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
DNA origami nanostructures are emerging as a bottom-up nanopatterning approach. Direct combination of this approach with top-down nanotechnology, such as ion beams, has not been considered because of the soft nature of the DNA material. Here we demonstrate that the shape of 2D DNA origami nanostructures deposited on Si substrates is well preserved upon irradiation by ion beams, modeling ion implantation, lithography, and sputtering conditions. Structural changes in 2D DNA origami nanostructures deposited on Si are analyzed using AFM imaging. The observed effects on DNA origami include structure height decrease or increase upon fast heavy ion irradiation in vacuum and in air, respectively. Slow- and medium-energy heavy ion irradiation results in the cutting of the nanostructures or crater formation with ion-induced damage in the 10 nm range around the primary ion track. In all these cases, the designed shape of the 2D origami nanostructure remains unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches.
Collapse
Affiliation(s)
- Leo Sala
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182 23, Czech Republic
| | - Agnes Zerolová
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182 23, Czech Republic
| | - Violaine Vizcaino
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Boulevard Henri Becquerel, BP 5133, 14070, Caen cedex 5, France
| | - Alain Mery
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Boulevard Henri Becquerel, BP 5133, 14070, Caen cedex 5, France
| | - Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Boulevard Henri Becquerel, BP 5133, 14070, Caen cedex 5, France
| | - Hermann Rothard
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Boulevard Henri Becquerel, BP 5133, 14070, Caen cedex 5, France
| | - Philippe Boduch
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Boulevard Henri Becquerel, BP 5133, 14070, Caen cedex 5, France
| | - Dominik Pinkas
- Electron Microscopy Center, Institute of Molecular Genetics of the CAS, Vídenská 1083, 142 20, Prague, Czech Republic
| | - Jaroslav Kocišek
- Dynamics of Molecules and Clusters Department, J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, Prague, 182 23, Czech Republic
| |
Collapse
|
7
|
Warmenhoven JW, Henthorn NT, McNamara AL, Ingram SP, Merchant MJ, Kirkby KJ, Schuemann J, Paganetti H, Prise KM, McMahon SJ. Effects of Differing Underlying Assumptions in In Silico Models on Predictions of DNA Damage and Repair. Radiat Res 2023; 200:509-522. [PMID: 38014593 PMCID: PMC11590750 DOI: 10.1667/rade-21-00147.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
The induction and repair of DNA double-strand breaks (DSBs) are critical factors in the treatment of cancer by radiotherapy. To investigate the relationship between incident radiation and cell death through DSB induction many in silico models have been developed. These models produce and use custom formats of data, specific to the investigative aims of the researchers, and often focus on particular pairings of damage and repair models. In this work we use a standard format for reporting DNA damage to evaluate combinations of different, independently developed, models. We demonstrate the capacity of such inter-comparison to determine the sensitivity of models to both known and implicit assumptions. Specifically, we report on the impact of differences in assumptions regarding patterns of DNA damage induction on predicted initial DSB yield, and the subsequent effects this has on derived DNA repair models. The observed differences highlight the importance of considering initial DNA damage on the scale of nanometres rather than micrometres. We show that the differences in DNA damage models result in subsequent repair models assuming significantly different rates of random DSB end diffusion to compensate. This in turn leads to disagreement on the mechanisms responsible for different biological endpoints, particularly when different damage and repair models are combined, demonstrating the importance of inter-model comparisons to explore underlying model assumptions.
Collapse
Affiliation(s)
- John W. Warmenhoven
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Nicholas T. Henthorn
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Aimee L. McNamara
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Samuel P. Ingram
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- Christie Medical Physics and Engineering, The Christie NHS
Foundation Trust, Manchester, United Kingdom
| | - Michael J. Merchant
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Karen J. Kirkby
- Division of Cancer Sciences, University of Manchester,
Manchester, United Kingdom
- The Christie NHS Foundation Trust, Manchester Academic
Health Science Centre, Manchester, United Kingdom
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Harald Paganetti
- Physics Division, Department of Radiation Oncology,
Massachusetts General Hospital and Harvard Medical School, Massachusetts
| | - Kevin M. Prise
- Patrick G Johnston Centre for Cancer Research,
Queen’s University Belfast, Belfast, United Kingdom
| | - Stephen J. McMahon
- Patrick G Johnston Centre for Cancer Research,
Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Wanstall HC, Henthorn NT, Jones J, Santina E, Chadwick AL, Angal-Kalinin D, Morris G, Warmenhoven JW, Smith R, Mathisen S, Merchant MJ, Jones RM. Quantification of damage to plasmid DNA from 35 MeV electrons, 228 MeV protons and 300 kVp X-rays in varying hydroxyl radical scavenging environments. JOURNAL OF RADIATION RESEARCH 2023:7153712. [PMID: 37154587 DOI: 10.1093/jrr/rrad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Indexed: 05/10/2023]
Abstract
The pBR322 plasmid DNA was irradiated with 35 MeV electrons, 228 MeV protons and 300 kVp X-rays to quantify DNA damage and make comparisons of DNA damage between radiation modalities. Plasmid was irradiated in a medium containing hydroxyl radical scavengers in varying concentrations. This altered the amount of indirect hydroxyl-mediated DNA damage, to create an environment that is more closely associated with a biological cell. We show that increasing hydroxyl scavenger concentration significantly reduced post-irradiation DNA damage to pBR322 plasmid DNA consistently and equally with three radiation modalities. At low scavenging capacities, irradiation with both 35 MeV electrons and 228 MeV protons resulted in increased DNA damage per dose compared with 300 kVp X-rays. We quantify both single-strand break (SSB) and double-strand break (DSB) induction between the modalities as a ratio of yields relative to X-rays, referred to as relative biological effectiveness (RBE). RBESSB values of 1.16 ± 0.15 and 1.18 ± 0.08 were calculated for protons and electrons, respectively, in a low hydroxyl scavenging environment containing 1 mM Tris-HCl for SSB induction. In higher hydroxyl scavenging capacity environments (above 1.1 × 106 s-1), no significant differences in DNA damage induction were found between radiation modalities when using SSB induction as a measure of RBE. Considering DSB induction, significant differences were only found between X-rays and 35 MeV electrons, with an RBEDSB of 1.72 ± 0.91 for 35 MeV electrons, indicating that electrons result in significantly more SSBs and DSBs per unit of dose than 300 kVp X-rays.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - James Jones
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Deepa Angal-Kalinin
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Geoffrey Morris
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - John-William Warmenhoven
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Rob Smith
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Storm Mathisen
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| | - Michael J Merchant
- Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- The Cockcroft Institute, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK
| |
Collapse
|
9
|
Souli MP, Nikitaki Z, Puchalska M, Brabcová KP, Spyratou E, Kote P, Efstathopoulos EP, Hada M, Georgakilas AG, Sihver L. Clustered DNA Damage Patterns after Proton Therapy Beam Irradiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232415606. [PMID: 36555249 PMCID: PMC9779025 DOI: 10.3390/ijms232415606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Modeling ionizing radiation interaction with biological matter is a major scientific challenge, especially for protons that are nowadays widely used in cancer treatment. That presupposes a sound understanding of the mechanisms that take place from the early events of the induction of DNA damage. Herein, we present results of irradiation-induced complex DNA damage measurements using plasmid pBR322 along a typical Proton Treatment Plan at the MedAustron proton and carbon beam therapy facility (energy 137-198 MeV and Linear Energy Transfer (LET) range 1-9 keV/μm), by means of Agarose Gel Electrophoresis and DNA fragmentation using Atomic Force Microscopy (AFM). The induction rate Mbp-1 Gy-1 for each type of damage, single strand breaks (SSBs), double-strand breaks (DSBs), base lesions and non-DSB clusters was measured after irradiations in solutions with varying scavenging capacity containing 2-amino-2-(hydroxymethyl)propane-1,3-diol (Tris) and coumarin-3-carboxylic acid (C3CA) as scavengers. Our combined results reveal the determining role of LET and Reactive Oxygen Species (ROS) in DNA fragmentation. Furthermore, AFM used to measure apparent DNA lengths provided us with insights into the role of increasing LET in the induction of highly complex DNA damage.
Collapse
Affiliation(s)
- Maria P Souli
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Zacharenia Nikitaki
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | | | | | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Panagiotis Kote
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, 1020 Vienna, Austria
- Nuclear Physics Institute, Czech Academy of Sciences, Na Truhlářce 39/64, 180 86 Prague, Czech Republic
| |
Collapse
|
10
|
Matsuya Y, Kai T, Parisi A, Yoshii Y, Sato T. Application of a simple DNA damage model developed for electrons to proton irradiation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
Abstract
Proton beam therapy allows irradiating tumor volumes with reduced side effects on normal tissues with respect to conventional x-ray radiotherapy. Biological effects such as cell killing after proton beam irradiations depend on the proton kinetic energy, which is intrinsically related to early DNA damage induction. As such, DNA damage estimation based on Monte Carlo simulations is a research topic of worldwide interest. Such simulation is a mean of investigating the mechanisms of DNA strand break formations. However, past modellings considering chemical processes and DNA structures require long calculation times. Particle and heavy ion transport system (PHITS) is one of the general-purpose Monte Carlo codes that can simulate track structure of protons, meanwhile cannot handle radical dynamics simulation in liquid water. It also includes a simple model enabling the efficient estimation of DNA damage yields only from the spatial distribution of ionizations and excitations without DNA geometry, which was originally developed for electron track-structure simulations. In this study, we investigated the potential application of the model to protons without any modification. The yields of single-strand breaks, double-strand breaks (DSBs) and the complex DSBs were assessed as functions of the proton kinetic energy. The PHITS-based estimation showed that the DSB yields increased as the linear energy transfer (LET) increased, and reproduced the experimental and simulated yields of various DNA damage types induced by protons with LET up to about 30 keV μm−1. These results suggest that the current DNA damage model implemented in PHITS is sufficient for estimating DNA lesion yields induced after protons irradiation except at very low energies (below 1 MeV). This model contributes to evaluating early biological impacts in radiation therapy.
Collapse
|
11
|
Assessing the DNA Damaging Effectiveness of Ionizing Radiation Using Plasmid DNA. Int J Mol Sci 2022; 23:ijms232012459. [PMID: 36293322 PMCID: PMC9604049 DOI: 10.3390/ijms232012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmid DNA is useful for investigating the DNA damaging effects of ionizing radiation. In this study, we have explored the feasibility of plasmid DNA-based detectors to assess the DNA damaging effectiveness of two radiotherapy X-ray beam qualities after undergoing return shipment of ~8000 km between two institutions. The detectors consisted of 18 μL of pBR322 DNA enclosed with an aluminum seal in nine cylindrical cavities drilled into polycarbonate blocks. We shipped them to Toronto, Canada for irradiation with either 100 kVp or 6 MV X-ray beams to doses of 10, 20, and 30 Gy in triplicate before being shipped back to San Diego, USA. The Toronto return shipment also included non-irradiated controls and we kept a separate set of controls in San Diego. In San Diego, we quantified DNA single strand breaks (SSBs), double strand breaks (DSBs), and applied Nth and Fpg enzymes to quantify oxidized base damage. The rate of DSBs/Gy/plasmid was 2.8±0.7 greater for the 100 kVp than the 6 MV irradiation. The 100 kVp irradiation also resulted in 5±2 times more DSBs/SSB than the 6 MV beam, demonstrating that the detector is sensitive enough to quantify relative DNA damage effectiveness, even after shipment over thousands of kilometers.
Collapse
|
12
|
Jamborová Z, Pachnerová Brabcová K, Jelínek Michaelidesová A, Zahradníček O, Danilová I, Ukraintsev E, Kundrát P, Štěpán V, Davídková M. RADIATION DAMAGE TO DNA PLASMIDS IN THE PRESENCE OF BOROCAPTATES. RADIATION PROTECTION DOSIMETRY 2022; 198:532-536. [PMID: 36005981 DOI: 10.1093/rpd/ncac094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Boron derivatives have great potential in cancer diagnostics and treatment. Borocaptates are used in boron neutron capture therapy and potentially in proton boron fusion therapy. This work examines modulation effects of two borocaptate compounds on radiation-induced DNA damage. Aqueous solutions of pBR322 plasmid containing increasing concentrations of borocaptates were irradiated with 60Co gamma rays or 30 MeV protons. Induction of single and double DNA strand breaks was investigated using agarose gel electrophoresis. In this model system, representing DNA without the intervention of cellular repair mechanisms, the boron derivatives acted as antioxidants. Clinically relevant boron concentrations of 40 ppm reduced the DNA single strand breakage seven-fold. Possible mechanisms of the observed effect are discussed.
Collapse
Affiliation(s)
- Zuzana Jamborová
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Anna Jelínek Michaelidesová
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Oldřich Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Irina Danilová
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Praha 6, Czech Republic
| | - Pavel Kundrát
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Václav Štěpán
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 110 00 Praha 1, Czech Republic
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha 8, Czech Republic
| |
Collapse
|
13
|
Frame CM, Chen Y, Gagnon J, Yuan Y, Ma T, Dritschilo A, Pang D. Proton induced DNA double strand breaks at the Bragg peak: Evidence of enhanced LET effect. Front Oncol 2022; 12:930393. [PMID: 35992825 PMCID: PMC9388940 DOI: 10.3389/fonc.2022.930393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate DNA double strand breaks (DSBs) induced by therapeutic proton beams in plateau and Bragg peak to demonstrate DSB induction due to the higher LET in the Bragg peak.Materials and MethodspUC19 plasmid DNA samples were irradiated to doses of 1000 and 3000 Gy on a Mevion S250i proton system with a monoenergetic, 110 MeV, proton beam at depths of 2 and 9.4 cm, corresponding to a position on the plateau and distal Bragg peak of the beam, respectively. The irradiated DNA samples were imaged by atomic force microscopy for visualization of individual DNA molecules, either broken or intact, and quantification of the DNA fragment length distributions for each of the irradiated samples. Percentage of the broken DNA and average number of DSBs per DNA molecule were obtained.ResultsCompared to irradiation effects in the plateau region, DNA irradiated at the Bragg peak sustained more breakage at the same dose, yielding more short DNA fragments and higher numbers of DSB per DNA molecule.ConclusionThe higher LET of proton beams at the Bragg peak results in more densely distributed DNA DSBs, which supports an underlying mechanism for the increased cell killing by protons at the Bragg peak.
Collapse
|
14
|
Ramos-Méndez J, García-García O, Domínguez-Kondo J, LaVerne JA, Schuemann J, Moreno-Barbosa E, Faddegon B. TOPAS-nBio simulation of temperature-dependent indirect DNA strand break yields. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac79f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Current Monte Carlo simulations of DNA damage have been reported only at ambient temperature. The aim of this work is to use TOPAS-nBio to simulate the yields of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) produced in plasmids under low-LET irradiation incorporating the effect of the temperature changes in the environment. A new feature was implemented in TOPAS-nBio to incorporate reaction rates used in the simulation of the chemical stage of water radiolysis as a function of temperature. The implemented feature was verified by simulating temperature-dependent G-values of chemical species in liquid water from 20 °C to 90 °C. For radiobiology applications, temperature dependent SSB and DSB yields were calculated from 0 °C to 42 °C, the range of available published measured data. For that, supercoiled DNA plasmids dissolved in aerated solutions containing EDTA irradiated by Cobalt-60 gamma-rays were simulated. TOPAS-nBio well reproduced published temperature-dependent G-values in liquid water and the yields of SSB and DSB for the temperature range considered. For strand break simulations, the model shows that the yield of SSB and DSB increased linearly with the temperature at a rate of (2.94 ± 0.17) × 10−10 Gy–1 Da–1 °C–1 (R
2 = 0.99) and (0.13 ± 0.01) × 10−10 Gy–1 Da–1 °C–1 (R
2 = 0.99), respectively. The extended capability of TOPAS-nBio is a complementary tool to simulate realistic conditions for a large range of environmental temperatures, allowing refined investigations of the biological effects of radiation.
Collapse
|
15
|
New damage model for simulating radiation-induced direct damage to biomolecular systems and experimental validation using pBR322 plasmid. Sci Rep 2022; 12:11345. [PMID: 35790804 PMCID: PMC9256689 DOI: 10.1038/s41598-022-15521-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we proposed a new damage model for estimating radiation-induced direct damage to biomolecular systems and validated its the effectiveness for pBR322 plasmids. The proposed model estimates radiation-induced damage to biomolecular systems by: (1) simulation geometry modeling using the coarse-grained (CG) technique to replace the minimum repeating units of a molecule with a single bead, (2) approximation of the threshold energy for radiation damage through CG potential calculation, (3) calculation of cumulative absorption energy for each radiation event in microscopic regions of CG models using the Monte Carlo track structure (MCTS) code, and (4) estimation of direct radiation damage to biomolecular systems by comparing CG potentials and absorption energy. The proposed model replicated measured data with an average error of approximately 14.2% in the estimation of radiation damage to pBR322 plasmids using the common MCTS code Geant4-DNA. This is similar to the results of previous simulation studies. However, in existing damage models, parameters are adjusted based on experimental data to increase the reliability of simulation results, whereas in the proposed model, they can be determined without using empirical data. Because the proposed model proposed is applicable to DNA and various biomolecular systems with minimal experimental data, it provides a new method that is convenient and effective for predicting damage in living organisms caused by radiation exposure.
Collapse
|
16
|
Zhu K, Wu C, Peng X, Ji X, Luo S, Liu Y, Wang X. Nanoscale Calculation of Proton-Induced DNA Damage Using a Chromatin Geometry Model with Geant4-DNA. Int J Mol Sci 2022; 23:ijms23116343. [PMID: 35683021 PMCID: PMC9181653 DOI: 10.3390/ijms23116343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Monte Carlo simulations can quantify various types of DNA damage to evaluate the biological effects of ionizing radiation at the nanometer scale. This work presents a study simulating the DNA target response after proton irradiation. A chromatin fiber model and new physics constructors with the ELastic Scattering of Electrons and Positrons by neutral Atoms (ELSEPA) model were used to describe the DNA geometry and the physical stage of water radiolysis with the Geant4-DNA toolkit, respectively. Three key parameters (the energy threshold model for strand breaks, the physics model and the maximum distance to distinguish DSB clusters) of scoring DNA damage were studied to investigate the impact on the uncertainties of DNA damage. On the basis of comparison of our results with experimental data and published findings, we were able to accurately predict the yield of various types of DNA damage. Our results indicated that the difference in physics constructor can cause up to 56.4% in the DNA double-strand break (DSB) yields. The DSB yields were quite sensitive to the energy threshold for strand breaks (SB) and the maximum distance to classify the DSB clusters, which were even more than 100 times and four times than the default configurations, respectively.
Collapse
Affiliation(s)
- Kun Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Chun Wu
- School of Nursing, University of South China, Hengyang 421001, China;
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xuantao Ji
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; (K.Z.); (X.P.); (X.J.); (S.L.); (Y.L.)
- Correspondence:
| |
Collapse
|
17
|
D-Kondo N, Moreno-Barbosa E, Štěphán V, Stefanová K, Perrot Y, Villagrasa C, Incerti S, De Celis Alonso B, Schuemann J, Faddegon B, Ramos-Méndez J. DNA damage modeled with Geant4-DNA: effects of plasmid DNA conformation and experimental conditions. Phys Med Biol 2021; 66. [PMID: 34787099 DOI: 10.1088/1361-6560/ac3a22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
The chemical stage of the Monte Carlo track-structure (MCTS) code Geant4-DNA was extended for its use in DNA strand break (SB) simulations and compared against published experimental data. Geant4-DNA simulations were performed using pUC19 plasmids (2686 base pairs) in a buffered solution of DMSO irradiated by60Co or137Csγ-rays. A comprehensive evaluation of SSB yields was performed considering DMSO, DNA concentration, dose and plasmid supercoiling. The latter was measured using the super helix density value used in a Brownian dynamics plasmid generation algorithm. The Geant4-DNA implementation of the independent reaction times method (IRT), developed to simulate the reaction kinetics of radiochemical species, allowed to score the fraction of supercoiled, relaxed and linearized plasmid fractions as a function of the absorbed dose. The percentage of the number of SB after •OH + DNA and H• + DNA reactions, referred as SSB efficiency, obtained using MCTS were 13.77% and 0.74% respectively. This is in reasonable agreement with published values of 12% and 0.8%. The SSB yields as a function of DMSO concentration, DNA concentration and super helix density recreated the expected published experimental behaviors within 5%, one standard deviation. The dose response of SSB and DSB yields agreed with published measurements within 5%, one standard deviation. We demonstrated that the developed extension of IRT in Geant4-DNA, facilitated the reproduction of experimental conditions. Furthermore, its calculations were strongly in agreement with experimental data. These two facts will facilitate the use of this extension in future radiobiological applications, aiding the study of DNA damage mechanisms with a high level of detail.
Collapse
Affiliation(s)
- N D-Kondo
- Faculty of Mathematics and Physics Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - E Moreno-Barbosa
- Faculty of Mathematics and Physics Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - V Štěphán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - K Stefanová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| | - Y Perrot
- Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
| | - C Villagrasa
- Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
| | - S Incerti
- Univ. Bordeaux, CNRS/IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
| | - B De Celis Alonso
- Faculty of Mathematics and Physics Sciences, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - J Schuemann
- Department of Radiation Oncology, Massachusets General Hospital and Hardvard Medical School, Boston, MA, United States of America
| | - B Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| | - J Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
18
|
Rucinski A, Biernacka A, Schulte R. Applications of nanodosimetry in particle therapy planning and beyond. Phys Med Biol 2021; 66. [PMID: 34731854 DOI: 10.1088/1361-6560/ac35f1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
This topical review summarizes underlying concepts of nanodosimetry. It describes the development and current status of nanodosimetric detector technology. It also gives an overview of Monte Carlo track structure simulations that can provide nanodosimetric parameters for treatment planning of proton and ion therapy. Classical and modern radiobiological assays that can be used to demonstrate the relationship between the frequency and complexity of DNA lesion clusters and nanodosimetric parameters are reviewed. At the end of the review, existing approaches of treatment planning based on relative biological effectiveness (RBE) models or dose-averaged linear energy transfer are contrasted with an RBE-independent approach based on nandosimetric parameters. Beyond treatment planning, nanodosimetry is also expected to have applications and give new insights into radiation protection dosimetry.
Collapse
Affiliation(s)
| | - Anna Biernacka
- University of Gdansk, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | | |
Collapse
|
19
|
Cheun-Arom T, Chuanasa T. An Efficient DNA Extraction for a Blue Xestospongia sp. Sponge and Its Associated Microorganisms Containing Cytotoxic Substances. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:917-927. [PMID: 34714444 DOI: 10.1007/s10126-021-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Extraction of high quantity and quality DNAs from marine sponges, which contain diverse and abundant microbial communities, is important to molecular biology techniques for the analysis of nucleic acids. Several marine sponges and their associated microorganisms have been known to produce cytotoxic natural products on several cancer cell lines via DNA damage mechanisms. These marine cytotoxic substances might be one of the factors that cause the low quantity and quality of DNAs during the DNA extraction from its living origin. Therefore, the extraction of DNA of a Thai blue marine sponge Xestospongia sp. with sufficient purity and quantity for molecular study can be challenging. In this study, we developed an efficient extraction method to prepare DNAs from a Thai blue marine sponge Xestospongia sp. which accumulated a highly potent cytotoxic alkaloid with DNA-damaging activity, named Renieramycin M (RM), as a major constituent in high quantity. We demonstrated that removal of RM from the sponge samples by a simple methanolic extraction before DNA extraction dramatically increased the yield and purity of DNAs compared to the RM-unremoved sponge samples. High molecular weight (HMW) genomic DNA was obtained from sponge samples with 8 times of RM elimination by using modified NaOAc salting-out extraction method. The quantity and quality of the prepared DNAs were comparatively determined via spectrophotometry, electrophoresis, and 16S rRNA gene amplification. Our result suggests that the removal of DNA-damaging constituents from the samples is a crucial step and must be seriously taken as the necessary consideration for the practical protocol of DNA extraction.
Collapse
Affiliation(s)
- Thaniwan Cheun-Arom
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Taksina Chuanasa
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
20
|
Sala L, Zerolová A, Rodriguez A, Reimitz D, Davídková M, Ebel K, Bald I, Kočišek J. Folding DNA into origami nanostructures enhances resistance to ionizing radiation. NANOSCALE 2021; 13:11197-11203. [PMID: 34142687 PMCID: PMC8247635 DOI: 10.1039/d1nr02013g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 05/22/2023]
Abstract
We report experimental results on damage induced by ionizing radiation to DNA origami triangles which are commonly used prototypes for scaffolded DNA origami nanostructures. We demonstrate extreme stability of DNA origami upon irradiation, which is caused by (i) the multi-row design holding the shape of the origami even after severe damage to the scaffold DNA and (ii) the reduction of damage to the scaffold DNA due to the protective effect of the folded structure. With respect to damage induced by ionizing radiation, the protective effect of the structure is superior to that of a naturally paired DNA double helix. Present results allow estimating the stability of scaffolded DNA origami nanostructures in applications such as nanotechnology, pharmacy or in singulo molecular studies where they are exposed to ionizing radiation from natural and artificial sources. Additionally, possibilities are opened for scaffolded DNA use in the design of radiation-resistant and radio-sensitive materials.
Collapse
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Agnes Zerolová
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic. and Department of Chemistry, Technical University of Liberec, 46117, Liberec, Czech Republic
| | - Alvaro Rodriguez
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Dan Reimitz
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Prague, Czech Republic
| | - Kenny Ebel
- Institute of Chemistry-Physical Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Ilko Bald
- Institute of Chemistry-Physical Chemistry, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry of the CAS, Dolejškova 3, 18223 Prague, Czech Republic.
| |
Collapse
|
21
|
Yogo K, Murayama C, Hirayama R, Matsumoto KI, Nakanishi I, Ishiyama H, Yasuda H. Protective Effects of Amino Acids on Plasmid DNA Damage Induced by Therapeutic Carbon Ions. Radiat Res 2021; 196:197-203. [PMID: 34043797 DOI: 10.1667/rade-21-00033.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
Radioprotectors with few side effects are useful for carbon-ion therapy, which directly induces clustering damage in DNA. With the aim of finding the most effective radioprotector, we investigated the effects of selected amino acids which might have chemical DNA-repair functions against therapeutic carbon ions. In the current study, we employed five amino acids: tryptophan (Trp), cysteine (Cys), methionine (Met), valine (Val) and alanine (Ala). Samples of supercoiled pBR322 plasmid DNA with a 17 mM amino acid were prepared in TE buffer (10 mM Tris, 1 mM ethylenediaminetetraacetic acid, pH 7.5). Phosphate buffered saline (PBS) was also used in assays of the 0.17 mM amino acid. The samples were irradiated with carbon-ion beams (290 MeV/u) on 6 cm spread-out Bragg peak at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba, Japan. Breaks in the DNA were detected as changes in the plasmids and quantified by subsequent electrophoresis on agarose gels. DNA damage yields and protection factors for each amino acid were calculated as ratios relative to reagent-free controls. Trp and Cys showed radioprotective effects against plasmid DNA damage induced by carbon-ion beam, both in PBS and TE buffer, comparable to those of Met. The double-strand break (DSB) yields and protective effects of Trp were comparable to those of Cys. The yields of both single-strand breaks and DSBs correlated with the scavenging capacity of hydroxyl radicals (rate constant for scavenging hydroxyl radicals multiplied by the amino acid concentration) in bulk solution. These data indicate that the radioprotective effects of amino acids against plasmid DNA damage induced by carbon ions could be explained primarily by the scavenging capacity of hydroxyl radicals. These findings suggest that some amino acids, such as Trp, Cys and Met, have good potential as radioprotectors for preventing DNA damage in normal tissues in carbon-ion therapy.
Collapse
Affiliation(s)
- Katsunori Yogo
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Ryoichi Hirayama
- Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ken-Ichiro Matsumoto
- Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ikuo Nakanishi
- Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
22
|
McConnell KA, Chang C, Giebeler A, Liu L, Zhu Qu L, Moiseenko V. Double-strand breaks measured along a 160 MeV proton Bragg curve using a novel FIESTA-DNA probe in a cell-free environment. Phys Med Biol 2021; 66:054001. [PMID: 33470972 DOI: 10.1088/1361-6560/abdd89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy treatment planning systems use a constant relative biological effectiveness (RBE) = 1.1 to convert proton absorbed dose into biologically equivalent high-energy photon dose. This method ignores linear energy transfer (LET) distributions, and RBE is known to change as a function of LET. Variable RBE approaches have been proposed for proton planning optimization. Experimental validation of models underlying these approaches is a pre-requisite for their clinical implementation. This validation has to probe every level in the evolution of radiation-induced biological damage leading to cell death, starting from DNA double-strand breaks (DSB). Using a novel FIESTA-DNA probe, we measured the probability of double-strand break (P DSB) along a 160 MeV proton Bragg curve at two dose levels (30 and 60 Gy (RBE)) and compared it to measurements in a 6 MV photon beam. A machined setup that held an Advanced Markus parallel plate chamber for proton dose verification alongside the probes was fabricated. Each sample set consisted of five 10 μl probes suspended inside plastic microcapillary tubes. These were irradiated with protons to 30 Gy (RBE) at depths of 5-17.5 cm and 60 Gy (RBE) at depths of 10-17.2 cm with 1 mm resolution around Bragg peak. Sample sets were also irradiated using 6MV photons to 20, 40, 60, and 80 Gy. For the 30 Gy (RBE) measurements, increases in P DSB/Gy were observed at 17.0 cm followed by decreases at larger depth. For the 60 Gy (RBE) measurements, no increase in P DSB/Gy was observed, but there was a decrease after 17.0 cm. Dose-response for P DSB between 30 and 60 Gy (RBE) showed less than doubling of P DSB when dose was doubled. Proton RBE effect from DSB, RBEP,DSB, was <1 except at the Bragg peak. The experiment showed that the novel probe can be used to perform DNA DSB measurements in a proton beam. To establish relevance to clinical environment, further investigation of the probe's chemical scavenging needs to be performed.
Collapse
Affiliation(s)
- Kristen A McConnell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America. California Proton Cancer Therapy Center, San Diego, CA 92121, United States of America
| | | | | | | | | | | |
Collapse
|
23
|
Small KL, Henthorn NT, Angal-Kalinin D, Chadwick AL, Santina E, Aitkenhead A, Kirkby KJ, Smith RJ, Surman M, Jones J, Farabolini W, Corsini R, Gamba D, Gilardi A, Merchant MJ, Jones RM. Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage. Sci Rep 2021; 11:3341. [PMID: 33558553 PMCID: PMC7870938 DOI: 10.1038/s41598-021-82772-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
This paper presents the first plasmid DNA irradiations carried out with Very High Energy Electrons (VHEE) over 100-200 MeV at the CLEAR user facility at CERN to determine the Relative Biological Effectiveness (RBE) of VHEE. DNA damage yields were measured in dry and aqueous environments to determine that ~ 99% of total DNA breaks were caused by indirect effects, consistent with other published measurements for protons and photons. Double-Strand Break (DSB) yield was used as the biological endpoint for RBE calculation, with values found to be consistent with established radiotherapy modalities. Similarities in physical damage between VHEE and conventional modalities gives confidence that biological effects of VHEE will also be similar-key for clinical implementation. Damage yields were used as a baseline for track structure simulations of VHEE plasmid irradiation using GEANT4-DNA. Current models for DSB yield have shown reasonable agreement with experimental values. The growing interest in FLASH radiotherapy motivated a study into DSB yield variation with dose rate following VHEE irradiation. No significant variations were observed between conventional and FLASH dose rate irradiations, indicating that no FLASH effect is seen under these conditions.
Collapse
Affiliation(s)
- K L Small
- The University of Manchester, Manchester, UK.
- The Cockcroft Institute, Daresbury, UK.
| | - N T Henthorn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - D Angal-Kalinin
- The University of Manchester, Manchester, UK
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - A L Chadwick
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - E Santina
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - A Aitkenhead
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - K J Kirkby
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R J Smith
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - M Surman
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - J Jones
- The Cockcroft Institute, Daresbury, UK
- ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, UK
| | - W Farabolini
- CERN, Geneva, Switzerland
- CEA Saclay, IRFU-DACM, Saclay, France
| | | | | | - A Gilardi
- CERN, Geneva, Switzerland
- Federico II, DIETI, University of Napoli, Napoli, Italy
| | - M J Merchant
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R M Jones
- The University of Manchester, Manchester, UK
- The Cockcroft Institute, Daresbury, UK
| |
Collapse
|
24
|
Wang L, Fossati P, Paganetti H, Ma L, Gillison M, Myers JN, Hug E, Frank SJ. The Biological Basis for Enhanced Effects of Proton Radiation Therapy Relative to Photon Radiation Therapy for Head and Neck Squamous Cell Carcinoma. Int J Part Ther 2021; 8:3-13. [PMID: 34285931 PMCID: PMC8270087 DOI: 10.14338/ijpt-20-00070.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) often present as local-regionally advanced disease at diagnosis, for which a current standard of care is x-ray-based radiation therapy, with or without chemotherapy. This approach provides effective local regional tumor control, but at the cost of acute and late toxicity that can worsen quality of life and contribute to mortality. For patients with human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (SCC) in particular, for whom the prognosis is generally favorable, de-escalation of the radiation dose to surrounding normal tissues without diminishing the radiation dose to tumors is desired to mitigate radiation-related toxic effects. Proton radiation therapy (PRT) may be an excellent de-escalation strategy because of its physical properties (that eliminate unnecessary radiation to surrounding tissues) and because of its biological properties (including tumor-specific variations in relative biological effectiveness [RBE] and linear energy transfer [LET]), in combination with concurrent systemic therapy. Early clinical evidence has shown that compared with x-ray-based radiation therapy, PRT offers comparable disease control with fewer and less severe treatment-related toxicities that can worsen the quality of life for patients with HNSCC. Herein, we review aspects of the biological basis of enhanced HNSCC cell response to proton versus x-ray irradiation in terms of radiation-induced gene and protein expression, DNA damage and repair, cell death, tumor immune responses, and radiosensitization of tumors.
Collapse
Affiliation(s)
- Li Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Gillison
- Department of Thoracic-Head & Neck Med Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey N. Myers
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugen Hug
- Department of Radiation Oncology, MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Wu J, Xie Y, Wang L, Wang Y. Monte Carlo simulations of energy deposition and DNA damage using TOPAS-nBio. ACTA ACUST UNITED AC 2020; 65:225007. [DOI: 10.1088/1361-6560/abbb73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Tang J, Xiao Q, Gui Z, Li B, Zhang P. Simulation of Proton-Induced DNA Damage Patterns Using an Improved Clustering Algorithm. Radiat Res 2020; 194:363-378. [PMID: 32931557 DOI: 10.1667/rr15552.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/23/2020] [Indexed: 11/03/2022]
Abstract
Simulations of deoxyribonucleic acid (DNA) molecular damage use the traversal algorithm that has the disadvantages of being time-consuming, slowly converging, and requiring high-performance computer clusters. This work presents an improved version of the algorithm, "density-based spatial clustering of applications with noise" (DBSCAN), using a KD-tree approach to find neighbors of each point for calculating clustered DNA damage. The resulting algorithm considers the spatial distributions for sites of energy deposition and hydroxyl radical attack, yielding the statistical probability of (single and double) DNA strand breaks. This work achieves high accuracy and high speed at calculating clustered DNA damage that has been induced by proton treatment at the molecular level while running on an i7 quad-core CPU. The simulations focus on the indirect effect generated by hydroxyl radical attack on DNA. The obtained results are consistent with those of other published experiments and simulations. Due to the array of chemical processes triggered by proton treatment, it is possible to predict the effects that different track structures of various energy protons produce on eliciting direct and indirect damage of DNA.
Collapse
Affiliation(s)
- Jing Tang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| | - Qinfeng Xiao
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, P.R. China
| | - Zhiguo Gui
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| | - Baosheng Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P.R. China
| | - Pengcheng Zhang
- Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data, North University of China, Taiyuan, 030051, P.R. China
| |
Collapse
|
27
|
Yogo K, Murayama C, Fujisawa Y, Maeyama T, Hirayama R, Ogawa Y, Matsumoto KI, Nakanishi I, Yasuda H, Ishiyama H, Hayakawa K. Potential Mechanisms for Protective Effect of D-Methionine on Plasmid DNA Damage Induced by Therapeutic Carbon Ions. Radiat Res 2020; 193:513-519. [PMID: 32216711 DOI: 10.1667/rr15502.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/28/2020] [Indexed: 11/03/2022]
Abstract
D-methionine (D-met), a dextrorotatory isoform of the amino acid L-methionine (L-met), can prevent oral mucositis and salivary hypofunction in mice exposed to radiation. However, the mechanism of its radioprotection is unclear, especially with regard to the stereospecific functions of D-met. Radiation is known to cause injury to normal tissue by triggering DNA damage in cells. Thus, in this study we sought to determine whether the chirality of D-/L-met affects radiation-induced events at the DNA level. We selected plasmid DNA assays to examine this effect in vitro, since these assays are highly sensitive and allow easy detection of DNA damage. Samples of supercoiled pBR322 plasmid DNA mixed with D-met, L-met or dimethylsulfoxide (DMSO) were prepared and irradiated with a Bragg peak beam of carbon ions (∼290 MeV/u) with a 6-cm spread. DNA strand breaks were indicated by the change in the form of the plasmid and were subsequently quantified using agarose gel electrophoresis. We found that D-met yielded approximately equivalent protection from carbon-ion-induced DNA damage as DMSO. Thus, we propose that the protective functions of methionine against plasmid DNA damage could be explained by the same mechanism as that for DMSO, namely, hydroxyl radical scavenging. This stereospecific radioprotective mechanism occurred at a level other than the DNA level. There was no significant difference between the radioprotective effect of D-met and L-met on DNA.
Collapse
Affiliation(s)
- Katsunori Yogo
- Graduate School of Medicine, Nagoya University, Aichi 461-8673, Japan
| | - Chieko Murayama
- Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Yoshiki Fujisawa
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Takuya Maeyama
- Graduate School of Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Ryoichi Hirayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Yukihiro Ogawa
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Kazushige Hayakawa
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| |
Collapse
|
28
|
Kinoshita K, Zabarmawi Y. Ionization clustering on charged particle tracks as a seed for biologically relevant radiation effects. Phys Rev E 2020; 101:062411. [PMID: 32688536 DOI: 10.1103/physreve.101.062411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/15/2020] [Indexed: 11/07/2022]
Abstract
We construct a statistical framework for investigating the physical origins of radiation effects on biological materials and report the fit of an analytical statistical model to rates of simple lesions in DNA. Modeling primary ionization damage as trails of electron vacancies left on the trajectories of fast charged particles, we derive the dependence of rates of spatial clustering on ionization density [linear energy transfer (LET)]; a clustering scale parameter, r_{0}; and number per cluster. Published experimental results on rates of single strand breaks and base lesions in dry DNA over a range of LET are fitted with the derived functions, assuming clusters of 1 or ≥1. The fits yield reasonable goodness of fit and values of r_{0} that are consistent with expectations. Limitations of the model and future developments are discussed. This framework may ultimately contribute to an improved understanding of the physical origins of biological radiation effects.
Collapse
Affiliation(s)
- K Kinoshita
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Y Zabarmawi
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
29
|
Brabcová KP, Jamborová Z, Michaelidesová A, Davídková M, Kodaira S, Šefl M, Štěpán V. RADIATION-INDUCED PLASMID DNA DAMAGE: EFFECT OF CONCENTRATION AND LENGTH. RADIATION PROTECTION DOSIMETRY 2019; 186:168-171. [PMID: 31803909 DOI: 10.1093/rpd/ncz196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Plasmid DNA is commonly used as a simpler substitute for a cell in studies of early effects of ionizing radiation because it allows to determine yields of primary DNA lesions. Experimental studies often employ plasmids of different lengths, in different concentrations in the aqueous solution. Influence of these parameters on the heavy-ion induced yields of primary DNA damage has been studied, using plasmids pUC19 (2686 bp), pBR322 (4361 bp) and pKLAC2 (9107 bp) in 10 and 50 ng/μl concentration. Results demonstrate the impact of plasmid length, while no significant difference was observed between the two concentrations. The uncertainty of the results is discussed.
Collapse
Affiliation(s)
- Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
| | - Zuzana Jamborová
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 110 00 Praha, Czech Republic
| | - Anna Michaelidesová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 110 00 Praha, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
| | - Satoshi Kodaira
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, 263-8555 Chiba, Japan
| | - Martin Šefl
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 110 00 Praha, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the CAS, Na Truhlářce 39/64, 180 00 Praha, Czech Republic
| |
Collapse
|
30
|
Pachnerová Brabcová K, Sihver L, Ukraintsev E, Štěpán V, Davídková M. HOW DETECTION OF PLASMID DNA FRAGMENTATION AFFECTS RADIATION STRAND BREAK YIELDS. RADIATION PROTECTION DOSIMETRY 2019; 183:89-92. [PMID: 30534982 DOI: 10.1093/rpd/ncy222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
A compromised detection of radiation-induced plasmid DNA fragments results in underestimation of calculated damage yields. Electrophoretic methods are easy and cheap, but they can only detect a part of the fragments, neglecting the shortest ones. These can be detected with atomic force microscopy, but at the expense of time and price. Both methods were used to investigate their capabilities to detect the DNA fragments induced by high-energetic heavy ions. The results were taken into account in calculations of radiation-induced yields of single and double strand breaks. It was estimated that the double strand break yield is twice as high when the fragments are at least partially detected with the agarose electrophoresis, compared to when they were completely omitted. Further increase by 13% was observed when the measured fragments were corrected for the fraction of the shortest fragments up to 300 base pairs, as detected with the atomic force microscopy. The effect of fragment detection on the single strand break yield was diminished.
Collapse
Affiliation(s)
- Kateřina Pachnerová Brabcová
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Prague, Czech Republic
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, Wien, Austria
- MedAustron, Marie-Curie-Straße 5, Wiener Neustadt, Austria
| | - Egor Ukraintsev
- Department of Thin Films and Nanostructures, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, Czech Republic
| | - Václav Štěpán
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Prague, Czech Republic
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Na Truhlářce 39/64, Prague, Czech Republic
| |
Collapse
|
31
|
Schuemann J, McNamara AL, Ramos-Méndez J, Perl J, Held KD, Paganetti H, Incerti S, Faddegon B. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiat Res 2019; 191:125-138. [PMID: 30609382 DOI: 10.1667/rr15226.1] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The TOPAS Monte Carlo (MC) system is used in radiation therapy and medical imaging research, having played a significant role in making Monte Carlo simulations widely available for proton therapy related research. While TOPAS provides detailed simulations of patient scale properties, the fundamental unit of the biological response to radiation is a cell. Thus, our goal was to develop TOPAS-nBio, an extension of TOPAS dedicated to advance understanding of radiobiological effects at the (sub-)cellular, (i.e., the cellular and sub-cellular) scale. TOPAS-nBio was designed as a set of open source classes that extends TOPAS to model radiobiological experiments. TOPAS-nBio is based on and extends Geant4-DNA, which extends the Geant4 toolkit, the basis of TOPAS, to include very low-energy interactions of particles down to vibrational energies, explicitly simulates every particle interaction (i.e., without using condensed histories) and propagates radiolysis products. To further facilitate the use of TOPAS-nBio, a graphical user interface was developed. TOPAS-nBio offers full track-structure Monte Carlo simulations, integration of chemical reactions within the first millisecond, an extensive catalogue of specialized cell geometries as well as sub-cellular structures such as DNA and mitochondria, and interfaces to mechanistic models of DNA repair kinetics. We compared TOPAS-nBio simulations to measured and published data of energy deposition patterns and chemical reaction rates (G values). Our simulations agreed well within the experimental uncertainties. Additionally, we expanded the chemical reactions and species provided in Geant4-DNA and developed a new method based on independent reaction times (IRT), including a total of 72 reactions classified into 6 types between neutral and charged species. Chemical stage simulations using IRT were a factor of 145 faster than with step-by-step tracking. Finally, we applied the geometric/chemical modeling to obtain initial yields of double-strand breaks (DSBs) in DNA fibers for proton irradiations of 3 and 50 MeV and compared the effect of including chemical reactions on the number and complexity of DSB induction. Over half of the DSBs were found to include chemical reactions with approximately 5% of DSBs caused only by chemical reactions. In conclusion, the TOPAS-nBio extension to the TOPAS MC application offers access to accurate and detailed multiscale simulations, from a macroscopic description of the radiation field to microscopic description of biological outcome for selected cells. TOPAS-nBio offers detailed physics and chemistry simulations of radiobiological experiments on cells simulating the initially induced damage and links to models of DNA repair kinetics.
Collapse
Affiliation(s)
- J Schuemann
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A L McNamara
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ramos-Méndez
- b Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - J Perl
- c SLAC National Accelerator Laboratory, Menlo Park, California
| | - K D Held
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - H Paganetti
- a Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - S Incerti
- d CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France.,e University of Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
| | - B Faddegon
- b Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Aitkenhead AH, Smith EAK, Ingram SP, Kirkby NF, Chadwick A, Burnet NG, Mackay RI, Kirkby KJ, Merchant MJ. Clinically relevant nanodosimetric simulation of DNA damage complexity from photons and protons. RSC Adv 2019; 9:6845-6858. [PMID: 35518487 PMCID: PMC9061037 DOI: 10.1039/c8ra10168j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Relative Biological Effectiveness (RBE), the ratio of doses between radiation modalities to produce the same biological endpoint, is a controversial and important topic in proton therapy. A number of phenomenological models incorporate variable RBE as a function of Linear Energy Transfer (LET), though a lack of mechanistic description limits their applicability. In this work we take a different approach, using a track structure model employing fundamental physics and chemistry to make predictions of proton and photon induced DNA damage, the first step in the mechanism of radiation-induced cell death. We apply this model to a proton therapy clinical case showing, for the first time, predictions of DNA damage on a patient treatment plan. Our model predictions are for an idealised cell and are applied to an ependymoma case, at this stage without any cell specific parameters. By comparing to similar predictions for photons, we present a voxel-wise RBE of DNA damage complexity. This RBE of damage complexity shows similar trends to the expected RBE for cell kill, implying that damage complexity is an important factor in DNA repair and therefore biological effect. Relative Biological Effectiveness (RBE) is a controversial and important topic in proton therapy. This work uses Monte Carlo simulations of DNA damage for protons and photons to probe this phenomenon, providing a plausible mechanistic understanding.![]()
Collapse
Affiliation(s)
- N. T. Henthorn
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - J. W. Warmenhoven
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. Sotiropoulos
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. H. Aitkenhead
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - E. A. K. Smith
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - S. P. Ingram
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. F. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - A. L. Chadwick
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - N. G. Burnet
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - R. I. Mackay
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - K. J. Kirkby
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| | - M. J. Merchant
- Division of Cancer Sciences
- School of Medical Sciences
- Faculty of Biology, Medicine and Health
- The University of Manchester
- UK
| |
Collapse
|
33
|
Abstract
Compromised detection of short DNA fragments can result in underestimation of radiation-induced clustered DNA damage. The fragments can be detected with atomic force microscopy (AFM), followed by image analysis to compute the length of plasmid molecules. Plasmid molecules imaged with AFM are represented by open or closed curves, possibly with crossings. For the analysis of such objects, a dedicated algorithm was developed, and its usability was demonstrated on the AFM images of plasmid pBR322 irradiated with 60Co gamma rays. The analysis of the set of the acquired AFM images revealed the presence of DNA fragments with lengths shorter than 300 base pairs that would have been neglected by a conventional detection method.
Collapse
|
34
|
Šefl M, Pachnerová Brabcová K, Štěpán V. Dosimetry as a Catch in Radiobiology Experiments. Radiat Res 2018; 190:404-411. [PMID: 30016217 DOI: 10.1667/rr15020.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Experimental radiobiological studies in which the effects of ionizing radiation on a biological model are examined often highlight the biological aspects while missing detailed descriptions of the geometry, sample and dosimetric methods used. Such omissions can hinder the reproducibility and comparability of the experimental data. An application based on the Geant4 simulation toolkit was developed to design experiments using a biological solution placed in a microtube. The application was used to demonstrate the influence of the type of microtube, sample volume and energy of a proton source on the dose distribution across the sample, and on the mean dose in the whole sample. The results shown here are for samples represented by liquid water in the 0.4-, 1.5- and 2.0-ml microtubes irradiated with 20, 30 and 100 MeV proton beams. The results of this work demonstrate that the mean dose and homogeneity of the dose distribution within the sample strongly depend on all three parameters. Furthermore, this work shows how the dose uncertainty propagates into the scored primary DNA damages in plasmid DNA studies using agarose gel electrophoresis. This application is provided freely to assist users in verifying their experimental setup prior to the experiment.
Collapse
Affiliation(s)
- Martin Šefl
- a Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic.,b Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | | | - Václav Štěpán
- a Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
Lampe N, Karamitros M, Breton V, Brown JMC, Sakata D, Sarramia D, Incerti S. Mechanistic DNA damage simulations in Geant4-DNA Part 2: Electron and proton damage in a bacterial cell. Phys Med 2018; 48:146-155. [PMID: 29371062 DOI: 10.1016/j.ejmp.2017.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 11/18/2022] Open
Abstract
We extended a generic Geant4 application for mechanistic DNA damage simulations to an Escherichia coli cell geometry, finding electron damage yields and proton damage yields largely in line with experimental results. Depending on the simulation of radical scavenging, electrons double strand breaks (DSBs) yields range from 0.004 to 0.010 DSB Gy-1 Mbp-1, while protons have yields ranging from 0.004 DSB Gy-1 Mbp-1 at low LETs and with strict assumptions concerning scavenging, up to 0.020 DSB Gy-1 Mbp-1 at high LETs and when scavenging is weakest. Mechanistic DNA damage simulations can provide important limits on the extent to which physical processes can impact biology in low background experiments. We demonstrate the utility of these studies for low dose radiation biology calculating that in E. coli, the median rate at which the radiation background induces double strand breaks is 2.8 × 10-8 DSB day-1, significantly less than the mutation rate per generation measured in E. coli, which is on the order of 10-3.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France; Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | | | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Jeremy M C Brown
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 26295B, The Netherlands
| | - Dousatsu Sakata
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33175 Gradignan, France.
| |
Collapse
|
36
|
Vyšín L, Burian T, Ukraintsev E, Davídková M, Grisham ME, Heinbuch S, Rocca JJ, Juha L. Dose-Rate Effects in Breaking DNA Strands by Short Pulses of Extreme Ultraviolet Radiation. Radiat Res 2018; 189:466-476. [PMID: 29505347 DOI: 10.1667/rr14825.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we examined dose-rate effects on strand break formation in plasmid DNA induced by pulsed extreme ultraviolet (XUV) radiation. Dose delivered to the target molecule was controlled by attenuating the incident photon flux using aluminum filters as well as by changing the DNA/buffer-salt ratio in the irradiated sample. Irradiated samples were examined using agarose gel electrophoresis. Yields of single- and double-strand breaks (SSBs and DSBs) were determined as a function of the incident photon fluence. In addition, electrophoresis also revealed DNA cross-linking. Damaged DNA was inspected by means of atomic force microscopy (AFM). Both SSB and DSB yields decreased with dose rate increase. Quantum yields of SSBs at the highest photon fluence were comparable to yields of DSBs found after synchrotron irradiation. The average SSB/DSB ratio decreased only slightly at elevated dose rates. In conclusion, complex and/or clustered damages other than cross-links do not appear to be induced under the radiation conditions applied in this study.
Collapse
Affiliation(s)
- Luděk Vyšín
- a Institute of Physics.,e Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomáš Burian
- a Institute of Physics.,c Institute of Plasma Physics.,d J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Michael E Grisham
- f Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
| | - Scott Heinbuch
- f Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
| | - Jorge J Rocca
- f Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado
| | - Libor Juha
- a Institute of Physics.,c Institute of Plasma Physics
| |
Collapse
|
37
|
Ribar A, Huber SE, Smiałek MA, Tanzer K, Neustetter M, Schürmann R, Bald I, Denifl S. Hydroperoxyl radical and formic acid formation from common DNA stabilizers upon low energy electron attachment. Phys Chem Chem Phys 2018; 20:5578-5585. [PMID: 29410988 DOI: 10.1039/c7cp07697e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
2-Amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) and ethylenediaminetetraacetic acid (EDTA) are key components of biological buffers and are frequently used as DNA stabilizers in irradiation studies. Such surface or liquid phase studies are done with the aim to understand the fundamental mechanisms of DNA radiation damage and to improve cancer radiotherapy. When ionizing radiation is used, abundant secondary electrons are formed during the irradiation process, which are able to attach to the molecular compounds present on the surface. In the present study we experimentally investigate low energy electron attachment to TRIS and methyliminodiacetic acid (MIDA), an analogue of EDTA, supported by quantum chemical calculations. The most prominent dissociation channel for TRIS is through hydroperoxyl radical formation, whereas the dissociation of MIDA results in the formation of formic and acetic acid. These compounds are well-known to cause DNA modifications, like strand breaks. The present results indicate that buffer compounds may not have an exclusive protecting effect on DNA as suggested previously.
Collapse
Affiliation(s)
- Anita Ribar
- Institute for Ion Physics and Applied Physics and Center of Molecular Biosciences Innsbruck, Leopold Franzens University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Mackay RI, Kirkby KJ, Merchant MJ. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models. Radiat Res 2017; 188:690-703. [PMID: 28792846 DOI: 10.1667/rr14755.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Monte Carlo based simulation has proven useful in investigating the effect of proton-induced DNA damage and the processes through which this damage occurs. Clustering of ionizations within a small volume can be related to DNA damage through the principles of nanodosimetry. For simulation, it is standard to construct a small volume of water and determine spatial clusters. More recently, realistic DNA geometries have been used, tracking energy depositions within DNA backbone volumes. Traditionally a chromatin fiber is built within the simulation and identically replicated throughout a cell nucleus, representing the cell in interphase. However, the in vivo geometry of the chromatin fiber is still unknown within the literature, with many proposed models. In this work, the Geant4-DNA toolkit was used to build three chromatin models: the solenoid, zig-zag and cross-linked geometries. All fibers were built to the same chromatin density of 4.2 nucleosomes/11 nm. The fibers were then irradiated with protons (LET 5-80 keV/μm) or alpha particles (LET 63-226 keV/μm). Nanodosimetric parameters were scored for each fiber after each LET and used as a comparator among the models. Statistically significant differences were observed in the double-strand break backbone size distributions among the models, although nonsignificant differences were noted among the nanodosimetric parameters. From the data presented in this article, we conclude that selection of the solenoid, zig-zag or cross-linked chromatin model does not significantly affect the calculated nanodosimetric parameters. This allows for a simulation-based cell model to make use of any of these chromatin models for the scoring of direct ion-induced DNA damage.
Collapse
Affiliation(s)
- N T Henthorn
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - J W Warmenhoven
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - M Sotiropoulos
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - R I Mackay
- b Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; and
| | - K J Kirkby
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - M J Merchant
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
39
|
Mavragani IV, Nikitaki Z, Souli MP, Aziz A, Nowsheen S, Aziz K, Rogakou E, Georgakilas AG. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis. Cancers (Basel) 2017; 9:cancers9070091. [PMID: 28718816 PMCID: PMC5532627 DOI: 10.3390/cancers9070091] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Maria P Souli
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| | - Asef Aziz
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Somaira Nowsheen
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| | - Khaled Aziz
- Mayo Medical Scientist Training Program, Mayo Medical School and Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emmy Rogakou
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, 11527 Athens, Greece.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece.
| |
Collapse
|
40
|
Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017; 107:125-135. [PMID: 27939934 DOI: 10.1016/j.freeradbiomed.2016.12.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022]
Abstract
Clustered DNA lesions, also called Multiply Damaged Sites, is the hallmark of ionizing radiation. It is defined as the combination of two or more lesions, comprising strand breaks, oxidatively generated base damage, abasic sites within one or two DNA helix turns, created by the passage of a single radiation track. DSB clustered lesions associate DSB and several base damage and abasic sites in close vicinity, and are assimilated to complex DSB. Non-DSB clustered lesions comprise single strand break, base damage and abasic sites. At radiation with low Linear Energy Transfer (LET), such as X-rays or γ-rays clustered DNA lesions are 3-4 times more abundant than DSB. Their proportion and their complexity increase with increasing LET; they may represent a large part of the damage to DNA. Studies in vitro using engineered clustered DNA lesions of increasing complexity have greatly enhanced our understanding on how non-DSB clustered lesions are processed. Base excision repair is compromised, the observed hierarchy in the processing of the lesions within a cluster leads to the formation of SSB or DSB as repair intermediates and increases the lifetime of the lesions. As a consequence, the chances of mutation drastically increase. Complex DSB, either formed directly by irradiation or by the processing of non-DSB clustered lesions, are repaired by slow kinetics or left unrepaired and cause cell death or pass mitosis. In surviving cells, large deletions, translocations, and chromosomal aberrations are observed. This review details the most recent data on the processing of non-DSB clustered lesions and complex DSB and tends to demonstrate the high significance of these specific DNA damage in terms of genomic instability induction.
Collapse
Affiliation(s)
- Evelyne Sage
- Institut Curie, PSL Research University, CNRS, UMR3347, F-91405 Orsay, France.
| | - Naoya Shikazono
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa-Shi, Kyoto 619-0215, Japan.
| |
Collapse
|
41
|
Souici M, Khalil TT, Muller D, Raffy Q, Barillon R, Belafrites A, Champion C, Fromm M. Single- and Double-Strand Breaks of Dry DNA Exposed to Protons at Bragg-Peak Energies. J Phys Chem B 2017; 121:497-507. [DOI: 10.1021/acs.jpcb.6b11060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mounir Souici
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
- Laboratoire
de Physique des Rayonnements et Applications, Université de Jijel, BP 98, Ouled Aissa, Jijel 18000, Algérie
| | - Talat T. Khalil
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Dominique Muller
- Laboratoire
ICube, CNRS-Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg, France
| | - Quentin Raffy
- Institut Pluridisciplinaire Hubert Curien, UMR CNRS 7178, 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2, France
| | - Rémi Barillon
- Institut Pluridisciplinaire Hubert Curien, UMR CNRS 7178, 23 rue du Loess, BP 28, 67037 Strasbourg Cedex 2, France
| | - Abdelfettah Belafrites
- Laboratoire
de Physique des Rayonnements et Applications, Université de Jijel, BP 98, Ouled Aissa, Jijel 18000, Algérie
| | - Christophe Champion
- Université de Bordeaux, CNRS/IN2P3, Centre d’Etudes Nucléaires de Bordeaux Gradignan, CENBG, Chemin du Solarium, BP 120, 33175 Gradignan, France
| | - Michel Fromm
- Université de Bourgogne Franche-Comté, UMR CNRS 6249 Chrono-Environnement, 16 Route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
42
|
McNamara A, Geng C, Turner R, Mendez JR, Perl J, Held K, Faddegon B, Paganetti H, Schuemann J. Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Phys Med 2016; 33:207-215. [PMID: 28017738 DOI: 10.1016/j.ejmp.2016.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 11/30/2022] Open
Abstract
Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can help bridge the gap between physics, chemistry and biology. The TOPAS collaboration is tackling this challenge by extending the current Monte Carlo tool to allow for sub-cellular in silico simulations in a new extension, TOPAS-nBio. TOPAS wraps and extends the Geant4 Monte Carlo simulation toolkit and the new extension allows the modeling of particles down to vibrational energies (∼2eV) within realistic biological geometries. Here we present a validation of biological geometries available in TOPAS-nBio, by comparing our results to two previously published studies. We compare the prediction of strand breaks in a simple linear DNA strand from TOPAS-nBio to a published Monte Carlo track structure simulation study. While TOPAS-nBio confirms the trend in strand break generation, it predicts a higher frequency of events below an energy of 17.5eV compared to the alternative Monte Carlo track structure study. This is due to differences in the physics models used by each code. We also compare the experimental measurement of strand breaks from incident protons in DNA plasmids to TOPAS-nBio simulations. Our results show good agreement of single and double strand breaks predicting a similar increase in the strand break yield with increasing LET.
Collapse
Affiliation(s)
- Aimee McNamara
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA.
| | - Changran Geng
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Jose Ramos Mendez
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kathryn Held
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Bruce Faddegon
- University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Harald Paganetti
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Jan Schuemann
- Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Schlathölter T, Eustache P, Porcel E, Salado D, Stefancikova L, Tillement O, Lux F, Mowat P, Biegun AK, van Goethem MJ, Remita H, Lacombe S. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomedicine 2016; 11:1549-56. [PMID: 27143877 PMCID: PMC4841428 DOI: 10.2147/ijn.s99410] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting.
Collapse
Affiliation(s)
- Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Pierre Eustache
- Institut des Sciences Moléculaires d'Orsay (ISMO), Univ. Paris Sud, CNRS, Université Paris Saclay, Orsay Cedex, France
| | - Erika Porcel
- Institut des Sciences Moléculaires d'Orsay (ISMO), Univ. Paris Sud, CNRS, Université Paris Saclay, Orsay Cedex, France
| | - Daniela Salado
- Institut des Sciences Moléculaires d'Orsay (ISMO), Univ. Paris Sud, CNRS, Université Paris Saclay, Orsay Cedex, France
| | - Lenka Stefancikova
- Institut des Sciences Moléculaires d'Orsay (ISMO), Univ. Paris Sud, CNRS, Université Paris Saclay, Orsay Cedex, France
| | | | - Francois Lux
- Institut Lumière Matière, Villeurbanne Cedex, France
| | - Pierre Mowat
- Institut Lumière Matière, Villeurbanne Cedex, France
| | - Aleksandra K Biegun
- Kernfysisch Versneller Instituut - Center for Advanced Radiation Technology (KVI-CART), University of Groningen, Groningen, the Netherlands
| | - Marc-Jan van Goethem
- Kernfysisch Versneller Instituut - Center for Advanced Radiation Technology (KVI-CART), University of Groningen, Groningen, the Netherlands
| | - Hynd Remita
- Laboratoire de Chimie Physique, Universite Paris-Sud, Orsay Cedex, France
| | - Sandrine Lacombe
- Institut des Sciences Moléculaires d'Orsay (ISMO), Univ. Paris Sud, CNRS, Université Paris Saclay, Orsay Cedex, France
| |
Collapse
|
44
|
Czapla-Masztafiak J, Szlachetko J, Milne CJ, Lipiec E, Sá J, Penfold TJ, Huthwelker T, Borca C, Abela R, Kwiatek WM. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy. Biophys J 2016; 110:1304-11. [PMID: 27028640 PMCID: PMC4816689 DOI: 10.1016/j.bpj.2016.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/01/2022] Open
Abstract
The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA.
Collapse
Affiliation(s)
- Joanna Czapla-Masztafiak
- Paul Scherrer Institut, Villigen, Switzerland; Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland.
| | - Jakub Szlachetko
- Paul Scherrer Institut, Villigen, Switzerland; Institute of Physics, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jacinto Sá
- Ångström Laboratory, Department of Chemistry, Uppsala University, Uppsala, Sweden; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Thomas J Penfold
- Department of Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|