1
|
Paithankar JG, Gupta SC, Sharma A. Therapeutic potential of low dose ionizing radiation against cancer, dementia, and diabetes: evidences from epidemiological, clinical, and preclinical studies. Mol Biol Rep 2023; 50:2823-2834. [PMID: 36595119 PMCID: PMC9808703 DOI: 10.1007/s11033-022-08211-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
The growing use of ionizing radiation (IR)-based diagnostic and treatment methods has been linked to increasing chronic diseases among patients and healthcare professionals. However, multiple factors such as IR dose, dose-rate, and duration of exposure influence the IR-induced chronic effects. The predicted links between low-dose ionizing radiation (LDIR) and health risks are controversial due to the non-availability of direct human studies. The studies pertaining to LDIR effects have importance in public health as exposure to background LDIR is routine. It has been anticipated that data from epidemiological and clinical reports and results of preclinical studies can resolve this controversy and help to clarify the notion of LDIR-associated health risks. Accumulating scientific literature shows reduced cancer risk, cancer-related deaths, curtailed neuro-impairments, improved neural functions, and reduced diabetes-related complications after LDIR exposure. In addition, it was found to alter evolutionarily conserved stress response pathways. However, the picture of molecular signaling pathways in LDIR responses is unclear. Besides, there is limited/no information on biomarkers of epidemiological LDIR exposure. Therefore, the present review discusses epidemiological, clinical, and preclinical studies on LDIR-induced positive effects in three chronic diseases (cancer, dementia, and diabetes) and their associated molecular mechanisms. The knowledge of LDIR response mechanisms may help to devise LDIR-based therapeutic modalities to stop disease progression. Modulation of these pathways may be helpful in developing radiation resistance among humans. However, more clinical evidence with additional biochemical, cellular, and molecular data and exploring the side effects of LDIR are the major areas of future research.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. .,Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, 781001, India.
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Shibrya EE, Rashed RR, Abd El Fattah MA, El-Ghazaly MA, Kenawy SA. Apigenin and Exposure to Low Dose Gamma Radiation Ameliorate Acetic Acid-Induced Ulcerative Colitis in Rats. Dose Response 2023; 21:15593258231155787. [PMID: 36756150 PMCID: PMC9900677 DOI: 10.1177/15593258231155787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease involving chronic and recurring colon inflammation. Current management protocols are limited by adverse effects or short-term symptomatic relief. We aimed to investigate the possible therapeutic prospect of low dose gamma (γ) irradiation or apigenin treatment in acetic acid-induced UC in rats. Induction of UC was carried out by installation of acetic acid intra-rectally. One hour post-induction, rats received a sole dose of γ-radiation (0.5 Gray) or were treated with apigenin (3 mg/kg/day, peroral) for 7 successive days. Antioxidant and anti-inflammatory effects of both agents were assessed via determination of colon malondialdehyde (MDA), reduced glutathione (GSH), total nitrate/nitrite (NOx), mucosal addressin cell adhesion molecule-1 (MAdCAM-1), and interleukin-1beta (IL-1β) contents as well as myeloperoxidase (MPO) activity. Body weight (BW), colon weight/length (W/L) ratio, disease activity index (DAI), and histopathological changes were evaluated. Gamma irradiation and apigenin significantly ameliorated the acetic acid-induced biochemical and histopathological changes. Both therapeutic approaches significantly restored colon contents of the investigated biomarkers. They modulated BW, colon W/L ratio and DAI. This study proposes low dose γ-irradiation as a new therapeutic candidate for the management of UC. We also concluded that apigenin exhibited therapeutic benefits in UC management.
Collapse
Affiliation(s)
- Eman E. Shibrya
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Rasha R. Rashed
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Mai A. Abd El Fattah
- Department of Pharmacology and
Toxicology, Faculty of Pharmacy, Cairo
University, Cairo, Egypt
| | - Mona A. El-Ghazaly
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Sanaa A. Kenawy
- Department of Pharmacology and
Toxicology, Faculty of Pharmacy, Cairo
University, Cairo, Egypt,Sanaa A. Kenawy, Department of Pharmacology
and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Ainy street,
Cairo 12411, Egypt.
| |
Collapse
|
3
|
Ju Z, Guo P, Xiang J, Lei R, Ren G, Zhou M, Yang X, Zhou P, Huang R. Low-dose radiation exaggerates HFD-induced metabolic dysfunction by gut microbiota through PA-PYCR1 axis. Commun Biol 2022; 5:945. [PMID: 36088469 PMCID: PMC9464247 DOI: 10.1038/s42003-022-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCo-exposure of High-fat-diet (HFD) behavior and environmental low-dose radiation (LDR) is common among majority occupational workers, but the synergism of this co-exposure in metabolic health is poorly understood. This study aimed to investigate the impact of gut microbiota and its metabolites on the regulation of HFD accompanied by LDR-associated with metabolic dysfunction and insulin resistance. Here, we reported that Parasutterella was markedly elevated in the gut microbiota of mice in co-exposure of HFD and LDR, accompanied by increased pyrrolidinecarboxylic acid (PA) level in both intestine and plasma. Transplantation of fecal microbiota from mice with co-exposure HFD and LDR with metabolic dysfunction resulted in increased disruption of metabolic dysfunction, insulin resistance and increased PYCR1 (Pyrroline-5-carboxylate reductase 1) expression. Mechanistically, intestinal barrier was damaged more serious in mice with co-exposure of HFD and LDR, leading high PA level in plasma, activating PYCR1 expression to inhibit insulin Akt/mTOR (AKT kinase-transforming protein/Serine threonine-protein kinase) signaling pathway to aggravate HFD-induced metabolic impairments. This study suggests a new avenue for interventions against western diet companied with low dose radiation exposure-driven metabolic impairments.
Collapse
|
4
|
Al-Brakati A, Albarakati AJA, Daabo HMA, Baty RS, Salem FEH, Habotta OA, Elmahallawy EK, Abdel-Mohsen DM, Taha H, Akabawy AMA, Kassab RB, Abdel Moneim AE, Amin HK. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 2020; 35:1175-1187. [PMID: 32548708 DOI: 10.1007/s11011-020-00583-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is an increasing metabolic disease worldwide associated with central nervous system disorders. Coffee is a widely consumed beverage that enriched with antioxidants with numerous medicinal applications. Accordingly, the present study aimed to investigate the therapeutic potential of orally administered green coffee bean water extract (GCBWE) against cortical damage induced by high fat diet (HFD) followed by a single injection of streptozotocin (STZ) in rats. Metformin (Met) was used as standard antidiabetic drug. Animals were allocated into six groups: control, GCBWE (100 mg/kg), HFD/STZ (40 mg/kg), HFD/STZ + GCBWE (50 mg/kg), HFD/STZ + GCBWE (100 mg/kg) and HFD/STZ + Met (200 mg/kg) which were treated daily for 28 days. Compared to control rats, HFD/STZ-treated rats showed decreased levels of cortical dopamine, norepinephrine and serotonin with marked increases in their metabolites. Further, HFD/STZ treatment resulted in notable elevations in malondialdehyde, protein carbonyl and total nitrite levels paralleled with declines in antioxidant markers (SOD, CAT, GPx, GR and GSH) and down-regulations of Sod2, Cat, GPx1 and Gsr gene expression. Neuroinflammation was evident in diabetic animals by marked elevations in TNF-α, IL-1β and up-regulation of inducible nitric oxide synthase. Significant rises incaspase-3 and Bax with decline in Bcl-2 level were noticed in diabetic rats together with similar results in their gene expressions. Cortical histopathological examination supported the biochemical and molecular findings. GCBWE administration achieved noteworthy neuroprotection in diabetic animals in most assessed parameters. The overall results suggested that antioxidant, anti-inflammatory; anti-apoptotic activities of GCBWE restored the cortical neurochemistry in diabetic rats.
Collapse
Affiliation(s)
- Ashraf Al-Brakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hamid M A Daabo
- Pharmacy Department, Duhok Technical Institute, Duhok Polytechnic University, Duhok, Iraq
| | - Roua S Baty
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Fatma Elzahraa H Salem
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ehab K Elmahallawy
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Doaa M Abdel-Mohsen
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Heba Taha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ahmed M A Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| | - Hatim K Amin
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
El-Latif El-Ghazaly MA, Rashed ER, Shafey GM, Zaki HF, Attia AS. Amelioration of thioacetamide-induced hepatic encephalopathy in rats by low-dose gamma irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:334-343. [PMID: 31786756 DOI: 10.1007/s11356-019-06934-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Brain affection is a common symptom of liver insufficiency. This study aimed to evaluate the role of low-dose γ irradiation (LDR) as a potential therapeutic agent in thioacetamide (TAA)-induced hepatic encephalopathy (HE) in rats. Effects of local and whole-body irradiation (0.5 Gy) on rat brain/liver were evaluated following the induction of HE by TAA (200 mg/kg/day/for 3 successive days). Serum activities of aspartate transaminase (AST) and alanine transaminase (ALT) and ammonia level were assessed. The effect of HE on brain was evaluated through the determination of brain contents of malondialdehyde (MDA), reduced glutathione (GSH), tumor necrosis factor-alpha (TNF-α), and interleukin-1beta (IL-1β) and glutathione peroxidase (GPx) activity. Moreover, apoptotic and inflammatory changes in brain and liver tissues were assessed together with alpha-smooth muscle actin (α-SMA); fibrosis marker. Results showed correction of the biochemical parameters which was supported by the results of the immunohistochemical examinations. LDR is a promising hepato- and neurotherapy against HE.
Collapse
Affiliation(s)
- Mona Abd El-Latif El-Ghazaly
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, PO box 29, Nasr City, Cairo, 11787, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, PO box 29, Nasr City, Cairo, 11787, Egypt
| | - Ghada Mahmoud Shafey
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, PO box 29, Nasr City, Cairo, 11787, Egypt.
| | - Hala Fahmy Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amina Salem Attia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Yu N, Wang S, Song X, Gao L, Li W, Yu H, Zhou C, Wang Z, Li F, Jiang Q. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway. Radiat Res 2018; 189:409-417. [PMID: 29420126 DOI: 10.1667/rr14840.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.
Collapse
Affiliation(s)
- Nan Yu
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Sinian Wang
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xiujun Song
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Ling Gao
- b Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, China Centers for Disease Control, Beijing 100088, China
| | - Wei Li
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Huijie Yu
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chuanchuan Zhou
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Zhenxia Wang
- c Department of General Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Fengsheng Li
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Qisheng Jiang
- a Lab of Radiation Damage Research, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| |
Collapse
|
7
|
Khalil A, Omran H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int J Radiat Biol 2017; 94:137-149. [PMID: 29252073 DOI: 10.1080/09553002.2018.1419300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effects of a low rate (100 mGy/min) fractionated whole body gamma irradiation (FWBGI) at different doses were assessed using a real-time PCR technique on the expression of some target genes implicated in the development of type 2 diabetes mellitus in high-fat diet (HFD) Wistar rats. METHOD HFD Wistar rats were exposed to different doses (12, 24 and 48 Gy) divided into 24 fractions (three times a week for two months), thus, the daily doses were 0.5, 1, 2 Gy, respectively. Total RNA was extracted and the expression of target genes was measured in the four intestinal segments (duodenum, jejunum, ileum and colon). RESULTS The pre-diabetic state already induced by HFD was found to be improved by irradiation exposure. This irradiation effect occurs mainly via altered anti-diabetic gene expressions (mRNA and protein levels) of the incretin glucagon-like peptide-1 (GLP-1) overall bowel segments except the colon which has its own specific response to irradiation exposure by the induction of the insulin receptor substrate 4 (IRS-4) and the uncoupling protein 3 (UCP3). CONCLUSIONS Results could be of great importance suggesting for the first time, a protective role for FWBGI on HFD animal models by increasing GLP-1 and UCP3 levels.
Collapse
Affiliation(s)
- Ayman Khalil
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| | - Hasan Omran
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| |
Collapse
|
8
|
Shi GJ, Zheng J, Wu J, Qiao HQ, Chang Q, Niu Y, Sun T, Li YX, Yu JQ. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice. Food Funct 2017; 8:1215-1226. [DOI: 10.1039/c6fo01575a] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We determine if LBP contributes to the recovery from spermatogenic dysfunction in diabetic individuals.
Collapse
Affiliation(s)
- Guang-Jiang Shi
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
- Guolong Hospital
| | - Jie Zheng
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Jing Wu
- Laboratory Animal Center
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Hai-Qi Qiao
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry Education
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization
- Ministry of Education
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu-Xiang Li
- College of Nursing
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Jian-Qiang Yu
- Department of Pharmacology
- Ningxia Medical University
- Yinchuan 750004
- China
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center
| |
Collapse
|