1
|
Heller A, Pisarevskaja A, Bölicke N, Barkleit A, Bok F, Wober J. The effect of four lanthanides onto a rat kidney cell line (NRK-52E) is dependent on the composition of the cell culture medium. Toxicology 2021; 456:152771. [PMID: 33831499 DOI: 10.1016/j.tox.2021.152771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/31/2021] [Indexed: 11/26/2022]
Abstract
Lanthanide (Ln) exposure poses a serious health risk to animals and humans. In this study, we investigated the effect of 10-9-10-3 M La, Ce, Eu, and Yb exposure onto the viability of rat renal NRK-52E cells in dependence on Ln concentration, exposure time, and composition of the cell culture medium. Especially, the influence of fetal bovine serum (FBS) and citrate onto Ln cytotoxicity, solubility, and speciation was investigated. For this, in vitro cell viability studies using the XTT assay and fluorescence microscopic investigations were combined with solubility and speciation studies using TRLFS and ICP-MS, respectively. The theoretical Ln speciation was predicted using thermodynamic modeling. All Ln exhibit a concentration- and time-dependent effect on NRK-52E cells. FBS is the key parameter influencing both Ln solubility and cytotoxicity. We demonstrate that FBS is able to bind Ln3+ ions, thus, promoting solubility and reducing cytotoxicity after Ln exposure for 24 and 48 h. In contrast, citrate addition to the cell culture medium has no significant effect on Ln solubility and speciation nor cytotoxicity after Ln exposure for 24 and 48 h. However, a striking increase of cell viability is observable after Ln exposure for 8 h. Out of the four Ln elements under investigation, Ce is the most effective. Results from TRLFS and solubility measurements correlate well to those from in vitro cell culture experiments. In contrast, results from thermodynamic modeling do not correlate to TRLFS results, hence, demonstrating that big gaps in the database render this method, currently, inapplicable for the prediction of Ln speciation in cell culture media. Finally, this study demonstrates the importance and the synergistic effects of combining chemical and spectroscopic methods with cell culture techniques and biological methods.
Collapse
Affiliation(s)
- Anne Heller
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Alina Pisarevskaja
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Nora Bölicke
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| | - Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Jannette Wober
- Technische Universität Dresden, School of Science, Faculty of Biology, Institute of Zoology, Chair of Molecular Cell Physiology and Endocrinology, Zellescher Weg 20b, 01217, Dresden, Germany.
| |
Collapse
|
2
|
Spielmann V, Li WB, Zankl M, Ramos JCO, Petoussi-Henss N. Uncertainty analysis in internal dose calculations for cerium considering the uncertainties of biokinetic parameters and S values. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:663-682. [PMID: 32951082 PMCID: PMC7544730 DOI: 10.1007/s00411-020-00872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/05/2020] [Indexed: 05/16/2023]
Abstract
Radioactive cerium and other lanthanides can be transported through the aquatic system into foodstuffs and then be incorporated by humans. Information on the uncertainty of reported dose coefficients for exposed members of the public is then needed for risk analysis. In this study, uncertainties of dose coefficients due to the ingestion of the radionuclides 141Ce and 144Ce were estimated. According to the schema of internal dose calculation, a general statistical method based on the propagation of uncertainty was developed. The method takes into account the uncertainties contributed by the biokinetic models and by the so-called S values. These S-values were derived by using Monte Carlo radiation transport simulations with five adult non-reference voxel computational phantoms that have been developed at Helmholtz Zentrum München, Germany. Random and Latin hypercube sampling techniques were applied to sample parameters of biokinetic models and S values. The uncertainty factors, expressed as the square root of the 97.5th and 2.5th percentile ratios, for organ equivalent dose coefficients of 141Ce were found to be in the range of 1.2-5.1 and for 144Ce in the range of 1.2-7.4. The uncertainty factor of the detriment-weighted dose coefficient for 141Ce is 2.5 and for 144Ce 3.9. It is concluded that a general statistical method for calculating the uncertainty of dose coefficients was developed and applied to the lanthanide cerium. The dose uncertainties obtained provide improved dose coefficients for radiation risk analysis of humans. Furthermore, these uncertainties can be used to identify those parameters most important in internal dose calculations by applying sensitivity analyses.
Collapse
Affiliation(s)
- Vladimir Spielmann
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| | - Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.
| | - Maria Zankl
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Nina Petoussi-Henss
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|