1
|
Fornalski KW. The short comment on the individual response to ionizing radiation. J Theor Biol 2025; 604:112092. [PMID: 40064395 DOI: 10.1016/j.jtbi.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
|
2
|
Krasowska J, Fornalski KW. Can Adaptive Response Be Considered in Radiation Risk Assessment? Dose Response 2025; 23:15593258251341601. [PMID: 40364915 PMCID: PMC12069944 DOI: 10.1177/15593258251341601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/29/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
|
3
|
Bugała E, Fornalski KW. Radiation adaptive response for constant dose-rate irradiation in high background radiation areas. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:29-44. [PMID: 39470814 PMCID: PMC11971215 DOI: 10.1007/s00411-024-01093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/26/2024] [Indexed: 11/01/2024]
Abstract
The presented paper describes the problem of human health in regions with high level of natural ionizing radiation in various places in the world. The radiation adaptive response biophysical model was presented and calibrated for the special case of constant dose-rate irradiation. The calibration was performed for the data of residents of several high background radiation areas, like Ramsar in Iran, Kerala in India or Yangjiang in China. Studied end-points were: chromosomal aberrations, cancer incidence and cancer mortality. For the case of aberrations, among collected publications about 45% have shown the existence of adaptive response. Average reduction of chromosomal aberrations was ∼ 10%, while for the case of cancer incidence it was ∼ 15% and ∼ 17% for cancer mortality (each taking into account only results showing adaptive response). Results of the other 55% of data regarding chromosomal aberrations have been tested with the LNT (linear no-threshold) hypothesis, but results were inconsistent with the linear model. The conditions for adaptive response occurrence are still unknown, but it is postulated to correlate with the distribution of individual radiosensitivity among members of surveyed populations.
Collapse
Affiliation(s)
- Ernest Bugała
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, Warszawa, 00-662, Poland
| | | |
Collapse
|
4
|
Fornalski KW, Adamowski Ł, Bugała E, Jarmakiewicz R, Krasowska J, Piotrowski Ł. Radiation adaptive response: the biophysical phenomenon and its theoretical description. RADIATION PROTECTION DOSIMETRY 2024; 200:1585-1589. [PMID: 39540508 DOI: 10.1093/rpd/ncae053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/11/2024] [Accepted: 02/19/2024] [Indexed: 11/16/2024]
Abstract
The radiation adaptive response (or radioadaptation) effect is a biophysical and radiobiological phenomenon responsible for, e.g. the enhancement of repair processes, cell cycle and apoptosis regulation or enhancement of antioxidant production in cells/organisms irradiated by low doses and low dose-rates of ionising radiation. This phenomenon, however, is not always present, which creates many problems both for experimenters and theoreticians. Here we propose a comprehensive and complete theoretical model of radioadaptation grounded in mathematical concept of dose- and time-related probability function of the adaptive response appearance. This can be used in the context of two special cases of the adaptive response: the Raper-Yonezawa (priming dose) effect or constant low-dose-rate irradiation (e.g. for high natural background). This complete theoretical approach is supported by Monte Carlo simulations and real-experimental data used for model calibration and validation.
Collapse
Affiliation(s)
- Krzysztof W Fornalski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Łukasz Adamowski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400 Otwock-Świerk, Poland
| | - Ernest Bugała
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Rafał Jarmakiewicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Julianna Krasowska
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Łukasz Piotrowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| |
Collapse
|
5
|
Awad MM, Abdelgawad MH, Aboelezz E, Ereiba KT. Biomarker dosimetry of acute low level of thermal neutrons and radiation adaptive response effect on rats. Sci Rep 2024; 14:18534. [PMID: 39122766 PMCID: PMC11316017 DOI: 10.1038/s41598-024-68640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
In this paper, we demonstrated the biological effects of acute low-dose neutrons on the whole body of rats and investigated the impact of that level of neutron dose to induce an in vivo radio-adaptive response. To understand the radio-adaptive response, the examined animals were exposed to acute neutron radiation doses of 5 and 10 mSv, followed by a 50 mSv challenge dose after 14 days. After irradiation, all groups receiving single and double doses were kept in cages for one day before sampling. The electron paramagnetic resonance (EPR) method was used to estimate the radiation-induced radicals in the blood, and some hematological parameters and lipid peroxidation (MDA) were determined. A comet assay was performed beside some of the antioxidant enzymes [catalase enzyme (CAT), superoxide dismutase (SOD), and glutathione (GSH)]. Seven groups of adult male rats were classified according to their dose of neutron exposure. Measurements of all studied markers are taken one week after harvesting, except for hematological markers, within 2 h. The results indicated lower production of antioxidant enzymes (CAT by 1.18-5.83%, SOD by 1.47-17.8%, and GSH by 11.3-82.1%). Additionally, there was an increase in red cell distribution width (RDW) (from 4.61 to 25.19%) and in comet assay parameters such as Tail Length, (from 6.16 to 10.81 µm), Tail Moment, (from 1.17 to 2.46 µm), and percentage of DNA in tail length (DNA%) (from 9.58 to 17.32%) in all groups exposed to acute doses of radiation ranging from 5 to 50 mSv, respectively. This emphasizes the ascending harmful effect with the increased acute thermal neutron doses. The values of the introduced factor of radio adaptive response for all markers under study reveal that the lower priming dose promotes a higher adaptation response and vice versa. Ultimately, the results indicate significant variations in DNA%, SOD enzyme levels, EPR intensity, total Hb concentration, and RDWs, suggesting their potential use as biomarkers for acute thermal neutron dosimetry. Further research is necessary to validate these measurements as biodosimetry for radiation exposure, including investigations involving the response impact of RAR with varied challenge doses and post-irradiation behavior.
Collapse
Affiliation(s)
- Misara M Awad
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards (NIS), Giza, Egypt.
| | - Khairy T Ereiba
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Scott BR. A Revised System of Radiological Protection Is Needed. HEALTH PHYSICS 2024; 126:419-423. [PMID: 38568174 DOI: 10.1097/hp.0000000000001791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The system of radiological protection has been based on linear no-threshold theory and related dose-response models for health detriment (in part related to cancer induction) by ionizing radiation exposure for almost 70 y. The indicated system unintentionally promotes radiation phobia, which has harmed many in relationship to the Fukushima nuclear accident evacuations and led to some abortions following the Chernobyl nuclear accident. Linear no-threshold model users (mainly epidemiologists) imply that they can reliably assess the cancer excess relative risk (likely none) associated with tens or hundreds of nanogray (nGy) radiation doses to an organ (e.g., bone marrow); for 1,000 nGy, the excess relative risk is 1,000 times larger than that for 1 nGy. They are currently permitted this unscientific view (ignoring evolution-related natural defenses) because of the misinforming procedures used in data analyses of which many radiation experts are not aware. One such procedure is the intentional and unscientific vanishing of the excess relative risk uncertainty as radiation dose decreases toward assigned dose zero (for natural background radiation exposure). The main focus of this forum article is on correcting the serious error of discarding risk uncertainty and the impact of the correction. The result is that the last defense of the current system of radiological protection relying on linear no-threshold theory (i.e., epidemiologic studies implied findings of harm from very low doses) goes away. A revised system is therefore needed.
Collapse
Affiliation(s)
- Bobby R Scott
- Lovelace Biomedical Research Institute, Albuquerque, NM (retired)
| |
Collapse
|
7
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Chaurasia RK, Sapra BK, Aswal DK. Interplay of immune modulation, adaptive response and hormesis: Suggestive of threshold for clinical manifestation of effects of ionizing radiation at low doses? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170178. [PMID: 38280586 DOI: 10.1016/j.scitotenv.2024.170178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/26/2023] [Accepted: 01/13/2024] [Indexed: 01/29/2024]
Abstract
The health impacts of low-dose ionizing radiation exposures have been a subject of debate over the last three to four decades. While there has been enough evidence of "no adverse observable" health effects at low doses and low dose rates, the hypothesis of "Linear No Threshold" continues to rule and govern the principles of radiation protection and the formulation of regulations and public policies. In adopting this conservative approach, the role of the biological processes underway in the human body is kept at abeyance. This review consolidates the available studies that discuss all related biological pathways and repair mechanisms that inhibit the progression of deleterious effects at low doses and low dose rates of ionizing radiation. It is pertinent that, taking cognizance of these processes, there is a need to have a relook at policies of radiation protection, which as of now are too stringent, leading to undue economic losses and negative public perception about radiation.
Collapse
Affiliation(s)
- R K Chaurasia
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, India; Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| | - D K Aswal
- Health, Safety and Environment Group,Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
9
|
Cherednichenko O, Pilyugina A, Nuraliev S, Azizbekova D. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503728. [PMID: 38432778 DOI: 10.1016/j.mrgentox.2024.503728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The dosimetry and control of exposure for individuals chronically exposed to ionizing radiation are important and complex issues. Assessment may be optimized by evaluating individual adaptation and radiosensitivity, but it is not possible for a single model to account for all relevant parameters. Our goal was to develop approaches for the calculation of doses for persons chronically exposed to ionizing radiation, taking their radiosensitivities into consideration. On the basis of ex vivo radiation of blood samples, dose-effect models were constructed for dose ranges 0.01-2.0 and 0.01-0.4 Gy, using different cytogenetic criteria. The frequencies of "dicentric chromosomes and rings" at low doses are too low to have predictive value. The different responses of subjects to radiation made it possible to categorize them according to their radiosensitivities and to generate separate dose-effect curves for radiosensitive, average, and radioresistant individuals, reducing the amount of error in retrospective dosimetry.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan.
| | - Anastassiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Serikbai Nuraliev
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Dinara Azizbekova
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| |
Collapse
|
10
|
Cherif J, Raddaoui A, Trabelsi M, Souissi N. Diagnostic low-dose X-ray radiation induces fluoroquinolone resistance in pathogenic bacteria. Int J Radiat Biol 2023; 99:1971-1977. [PMID: 37436698 DOI: 10.1080/09553002.2023.2232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE The crisis of antibiotic resistance has been attributed to the overuse or misuse of these medications. However, exposure of bacteria to physical stresses such as X-ray radiation, can also lead to the development of resistance to antibiotics. The present study aimed to investigate the effect of exposure to diagnostic low-dose X-ray radiation on the bacterial response to antibiotics in two pathogenic bacteria, including the Gram-positive Staphylococcus aureus and Gram-negative Salmonella enteritidis. METHODS The bacterial strains were exposed to diagnostic X-ray doses of 5 and 10 mGy, which are equivalent to the doses delivered to patients during conventional radiography X-ray examinations in accordance with the European guidelines on quality criteria for diagnostic radiographic images. Following exposure to X-ray radiation, the samples were used to estimate bacterial growth dynamics and perform antibiotic susceptibility tests. RESULTS The results indicate that exposure to diagnostic low-dose X-ray radiation increased the number of viable bacterial colonies of both Staphylococcus aureus and Salmonella enteritidis and caused a significant change in bacterial susceptibility to antibiotics. For instance, in Staphylococcus aureus, the diameter of the inhibition zones for marbofloxacin decreased from 29.66 mm before irradiation to 7 mm after irradiation. A significant decrease in the inhibition zone was also observed for penicillin. In the case of Salmonella enteritidis, the diameter of the inhibition zone for marbofloxacin was 29 mm in unexposed bacteria but decreased to 15.66 mm after exposure to 10 mGy of X-ray radiation. Furthermore, a significant decrease in the inhibition zone was detected for amoxicillin and amoxicillin/clavulanic acid (AMC). CONCLUSION It is concluded that exposure to diagnostic X-ray radiation can significantly alter bacterial susceptibility to antibiotics. This irradiation decreased the effectiveness of fluoroquinolone and β-lactam antibiotics. Specifically, low-dose X-rays made Staphylococcus aureus resistant to marbofloxacin and increased its resistance to penicillin. Similarly, Salmonella Enteritidis became resistant to both marbofloxacin and enrofloxacin, and showed reduced sensitivity to amoxicillin and AMC.
Collapse
Affiliation(s)
- Jaouhra Cherif
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Anis Raddaoui
- Laboratory Ward, National Bone Marrow Transplant Center, University of Tunis El Manar, Tunis, Tunisia
| | - Meriam Trabelsi
- Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nada Souissi
- Bacteriology Laboratory, Tunisian Institute of Veterinary Research, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Kino K. The Radiation-Specific Components Generated in the Second Step of Sequential Reactions Have a Mountain-Shaped Function. TOXICS 2023; 11:301. [PMID: 37112531 PMCID: PMC10143257 DOI: 10.3390/toxics11040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
A mathematical model for radiation hormesis below 100 mSv has previously been reported, but the origins of the formula used in the previous report were not provided. In the present paper, we first considered a sequential reaction model with identical rate constants. We showed that the function of components produced in the second step of this model agreed well with the previously reported function. Furthermore, in a general sequential reaction model with different rate constants, it was mathematically proved that the function representing the component produced in the second step is always mountain-shaped: the graph has a peak with one inflection point on either side, and such a component may induce radiation hormesis.
Collapse
Affiliation(s)
- Katsuhito Kino
- Faculty of Science and Engineering, Tokushima Bunri University, 1314-1 Shido, Sanuki-shi 769-2193, Kagawa, Japan
| |
Collapse
|
12
|
Gaddini L, Bernardo A, Greco A, Campa A, Esposito G, Matteucci A. Adaptive Response in Rat Retinal Cell Cultures Irradiated with γ-rays. Int J Mol Sci 2023; 24:1972. [PMID: 36768293 PMCID: PMC9916556 DOI: 10.3390/ijms24031972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Retina can receive incidental γ-ray exposure from various sources. For example, although radiation therapy is a crucial tool for managing head and neck tumors, patients may develop ocular complications as collateral damage from accidental irradiation. Recently, there has been concern that retinal irradiation during space flight may compromise mission goals and long-term quality of life after space travel. Previously, in our in vitro model, we proved that immature retinal cells are more vulnerable to γ-radiation than differentiated neurons. Here, we investigate if a low-dose pre-irradiation (0.025 Gy), known to have a protective effect in various contexts, can affect DNA damage and oxidative stress in cells exposed to a high dose of γ-rays (2 Gy). Our results reveal that pre-irradiation reduces 2 Gy effects in apoptotic cell number, H2AX phosphorylation and oxidative stress. These defensive effects are also evident in glial cells (reduction in GFAP and ED1 levels) and antioxidant enzymes (catalase and CuZnSOD). Overall, our results confirm that rat retinal cultures can be an exciting tool to study γ-irradiation toxic effects on retinal tissue and speculate that low irradiation may enhance the skill of retinal cells to reduce damage induced by higher doses.
Collapse
Affiliation(s)
- Lucia Gaddini
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonietta Bernardo
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Anita Greco
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Alessandro Campa
- National Centre for Radiation Protecti on and Computational Physics, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppe Esposito
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
| | - Andrea Matteucci
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
13
|
Leung CN, Howell DM, de Toledo SM, Azzam EI, Howell RW. Late Effects of Heavy-Ion Space Radiation on Splenocyte Subpopulations and NK Cytotoxic Function. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2022; 9:949432. [PMID: 39554816 PMCID: PMC11566395 DOI: 10.3389/fspas.2022.949432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
With current goals of increased space exploration and travel to Mars, there has been great interest in understanding the long-term effects of high atomic number, high energy (HZE) ion exposure on various organ systems and the immune system. Little is known about late effects on the immune system after high-LET exposure. Therefore, our objective was to determine how natural killer (NK) cell populations were affected in geriatric mice that were exposed to HZE particles during middle-age, thereby representing elderly retired astronauts that undertook deep space missions. Methods 10 month old male CBA/CaJ mice were whole-body irradiated: sham (control); 150-cGy gamma-rays (delivered in 1 fraction); 40-cGy 1-GeV/nu 28Si14+ ions (delivered in 3 fractions); 40-cGy 1-GeV/nu 16O8+ ions (1 fraction); and 40-cGy 1-GeV/nu 16O8+ ions (3 fractions). The mice were sacrificed 1-1.5 yr post-exposure, and the spleens harvested. Splenocyte effector (E) cells were harvested and added to 51Cr-labeled Yac-1 target (T) cells in E:T ratios of 12:1, 25:1, 50:1, and 100:1. NK cytotoxicity was measured with 51Cr release. In addition, 2 million splenocytes were aliquoted and stained with a seven-antibody cocktail, and flow cytometry was used to determine the percentage of NK, B lymphocytes, and T lymphocytes in the splenocyte population. Results Mice exposed to either a single fraction of 150-cGy gamma rays or 40-cGy 16O8+ ions in 3 fractions were found to have significant decreases in NK cytotoxicity of approximately 30% and 25%, respectively. No significant differences were observed in NK cytotoxicity for 40-cGy 16O8+ ions delivered in 1 fraction, or 40-cGy 28Si14+ ions delivered in 3 fractions. No significant differences were observed in the percentage of spleen cells that were NK (%NK) amongst the groups. Conclusion Fractionated HZE ion exposure has the potential to affect the innate arm of the immune system long after exposure, leading to decreases in NK cell function. Therefore, protective countermeasures may need to be considered to decrease the risk of reduced long-term immune function in elderly retired astronauts that undertook deep space missions.
Collapse
Affiliation(s)
- Calvin N. Leung
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Donna M. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Natural Sciences Department, Middlesex College, Edison, NJ, USA
| | - Sonia M. de Toledo
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Health Sciences, Canadian Nuclear Laboratories, Chalk River, OT, Canada
| | - Roger W. Howell
- Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
14
|
Fornalski KW, Adamowski Ł, Bugała E, Jarmakiewicz R, Kirejczyk M, Kopyciński J, Krasowska J, Kukulski P, Piotrowski Ł, Ponikowska J, Reszczyńska J, Słonecka I, Wysocki P, Dobrzyński L. Biophysical Modeling of the Ionizing Radiation Influence on Cells Using the Stochastic (Monte Carlo) and Deterministic (Analytical) Approaches. Dose Response 2022; 20:15593258221138506. [PMID: 36458282 PMCID: PMC9706082 DOI: 10.1177/15593258221138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
This review article describes our simplified biophysical model for the response of a group of cells to ionizing radiation. The model, which is a product of 10 years of studies, acts as (a) a comprehensive stochastic approach based on the Monte Carlo simulation with a probability tree and (b) the thereof derived detailed deterministic models describing the selected biophysical and radiobiological phenomena in an analytical manner. Specifically, the presented model describes effects such as the risk of neoplastic transformation of cells relative to the absorbed radiation dose, the dynamics of tumor development, the priming dose effect (also called the Raper-Yonezawa effect) based on the introduced adaptive response approach, and the bystander effect. The model is also modifiable depending on users' potential needs.
Collapse
Affiliation(s)
- Krzysztof W. Fornalski
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
- National Centre for Nuclear
Research (NCBJ), Poland
| | | | - Ernest Bugała
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | | | | - Jakub Kopyciński
- Center for Theoretical
Physics, Polish Academy of Sciences (CFT
PAN), Poland
| | | | - Piotr Kukulski
- Department of Mechanical, Aerospace
and Civil Engineering, University of Manchester (MACE
UoM), United Kingdom
| | | | - Julia Ponikowska
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Joanna Reszczyńska
- Mossakowski Medical Research
Institute,
Polish Academy
of Sciences (IMDiK PAN), Poland
| | - Iwona Słonecka
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | - Paweł Wysocki
- Faculty of Physics, Warsaw University
of Technology (WF PW), Poland
| | | |
Collapse
|