1
|
Zong X, Zhu L, Wang Y, Wang J, Gu Y, Liu Q. Cohort Studies and Multi-omics Approaches to Low-Dose Ionizing Radiation-Induced Cardiovascular Disease: A Comprehensive Review. Cardiovasc Toxicol 2025; 25:148-165. [PMID: 39538046 DOI: 10.1007/s12012-024-09943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The effect of low-dose ionizing radiation exposure on the risk of cardiovascular disease (CVD) represents a significant concern in the field of radiation protection. The prevailing approach to mitigating the adverse effects of low-dose or low-dose-rate radiation does not currently incorporate the potential risk of CVD, despite the possibility that such risk may be a substantial contributor to overall health hazards. Current evidence suggests a potential association between radiation exposure and CVD; however, the overall findings remain inconclusive. This is particularly due to the uncertainty surrounding the influence of significant non-radiation risk factors on the associations reported in epidemiological studies. It is difficult to discern the underlying connection in observational epidemiology when there is substantial variation in baseline risk factors. The paucity of epidemiological research in this domain is being partially offset by the advancement of multi-omics approaches. These methods assist in identifying radiosensitive targets, comprehending underlying biological processes, and pinpointing biomarkers. This, in turn, fortifies the evidence gleaned from epidemiological studies. In this review, we delve into the body of epidemiological research pertaining to CVD induced by low-dose ionizing radiation and the application of multi-omics techniques. The integration of these two methodologies holds the promise of identifying specific molecules or biological pathways that can be employed to validate endpoints related to radiation risk assessment.
Collapse
Affiliation(s)
- Xumin Zong
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Lin Zhu
- School of Basic Medical Sciences, Weifang Medical University, Shandong, 261000, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, No.238 Baidi Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Amit G, Vagerman R, Revayev O. 'TLDetect': AI-Based Application for Detection and Correction of Anomalous TLD Glow Curves. SENSORS (BASEL, SWITZERLAND) 2024; 24:6904. [PMID: 39517804 PMCID: PMC11548482 DOI: 10.3390/s24216904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
This research reviews a novel artificial intelligence (AI)-based application called TLDetect, which filters and classifies anomalous glow curves (GCs) of thermoluminescent dosimeters (TLDs). Until recently, GC review and correction in the lab were performed using an old in-house software, which uses the Microsoft Access database and allows the laboratory technician to manually review and correct almost all GCs without any filtering. The newly developed application TLDetect uses a modern SQL database and filters out only the necessary GCs for technician review. TLDetect first uses an artificial neural network (ANN) model to filter out all regular GCs. Afterwards, it automatically classifies the rest of the GCs into five different anomaly classes. These five classes are defined by the typical patterns of GCs, i.e., high noise at either low or high temperature channels, untypical GC width (either wide or narrow), shifted GCs whether to the low or to the high temperatures, spikes, and a last class that contains all other unclassified anomalies. By this automatic filtering and classification, the algorithm substantially reduces the amount of the technician's time spent reviewing the GCs and makes the external dosimetry laboratory dose assessment process more repeatable, more accurate, and faster. Moreover, a database of the class anomalies distribution over time of GCs is saved along with all their relevant statistics, which can later assist with preliminary diagnosis of TLD reader hardware issues.
Collapse
Affiliation(s)
- Gal Amit
- Dosimetry Section, Soreq Nuclear Research Center, Yavne 8180000, Israel
| | - Roy Vagerman
- Systems Development Division, Soreq Nuclear Research Center, Yavne 8180000, Israel
| | - Oran Revayev
- Systems Development Division, Soreq Nuclear Research Center, Yavne 8180000, Israel
| |
Collapse
|
3
|
Cha ES, Lee D, Sung H, Jang WI, Kwon TE, Jeong HY, Seo S. Risks of Circulatory Diseases among Korean Radiation Workers Exposed to Low-dose Radiation. Radiat Res 2024; 202:649-661. [PMID: 39149818 DOI: 10.1667/rade-23-00148.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
High-dose radiation has been widely recognized as a risk factor for circulatory diseases. There is increasing evidence for risk of circulatory diseases in response to low and moderate radiation doses in recent years, but the results are not always consistent. We aimed to evaluate the associations between low-dose radiation exposure (<0.1 Gy) and the incidence of circulatory disease in a large cohort of Korean radiation workers. We collected data from a cohort of 187,001 radiation workers monitored for personal radiation dose since 1984 and linked with the National Health Insurance Service data from 2002 to 2021. Excess relative risks (ERRs) per 100 mGy were calculated to quantify the radiation dose-response relationship. The mean duration of follow-up was 13.3 years. A total of 12,705 cases of cerebrovascular disease (CeVD) and 19,647 cases of ischemic heart disease (IHD) were diagnosed during the follow-up period (2002-2021). The average cumulative heart dose was 4.10 mGy, ranging from 0 to 992.62 mGy. The ERR per 100 mGy with 10-year lagged cumulative heart doses was estimated at -0.094 (95% CI -0.248, 0.070) for CeVD and -0.173 (95% CI -0.299, -0.041) for IHD. The ERRs were not significantly changed after adjusting for confounding factors such as smoking, income, blood pressure, body mass index, and blood glucose level. A linear quadratic model was found to provide a better fit for the ERR of CeVD and IHD than a linear model (P = 0.009 and 0.030, respectively). There were no statistically significant variations in ERR/100 mGy estimates for either CeVD or IHD in terms of sex, attained age, and duration of employment; however, heterogeneity in the ERR/100 mGy estimates for CeVD among occupations was observed (P = 0.001). Our study did not find conclusive evidence supporting the association between occupational low-dose radiation and an increased risk of circulatory diseases. The significant negative ERR estimates for IHD need further investigation with a more extended follow-up period.
Collapse
Affiliation(s)
- Eun Shil Cha
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Dalnim Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Hyoju Sung
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Won Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| | - Tae-Eun Kwon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ho Yeon Jeong
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Seoul, South Korea
| | - Songwon Seo
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, South Korea
| |
Collapse
|
4
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Zablotska LB, Little MP, Hamada N. Revisiting an Inverse Dose-Fractionation Effect of Ionizing Radiation Exposure for Ischemic Heart Disease: Insights from Recent Studies. Radiat Res 2024; 202:80-86. [PMID: 38772552 PMCID: PMC11260496 DOI: 10.1667/rade-00230.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/23/2024]
Abstract
Over the last two decades, there has been emerging evidence suggesting that ionizing radiation exposures could be associated with elevated risks of cardiovascular disease (CVD), particularly ischemic heart disease (IHD). Excess CVD risks have been observed in a number of exposed groups, with generally similar risk estimates both at low and high radiation doses and dose rates. In 2014, we reported for the first time significantly higher risks of IHD mortality when radiation doses were delivered over a protracted period of time (an inverse dose-fractionation effect) in the Canadian Fluoroscopy Cohort Study. Here we review the current evidence on the dose-fractionation effect of radiation exposure, discuss potential implication for radiation protection policies and suggest further directions for research in this area.
Collapse
Affiliation(s)
- Lydia B Zablotska
- Department of Epidemiology & Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland; Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
6
|
Manenti G, Coppeta L, Kirev IV, Verno G, Garaci F, Magrini A, Floris R. Low-Dose Occupational Exposure to Ionizing Radiation and Cardiovascular Effects: A Narrative Review. Healthcare (Basel) 2024; 12:238. [PMID: 38255124 PMCID: PMC10815868 DOI: 10.3390/healthcare12020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Historically, non-cancer diseases have not been considered a health risk following low-dose exposure to ionizing radiation. However, it is now well known that high-dose ionizing radiation causes cardiovascular disease, and emerging epidemiological evidence suggests an excess risk of non-cancer diseases even following exposure to lower doses of ionizing radiation than previously thought. In fact, the evidence is strongest for cardiovascular disease (CVD). The aim of this review was to report the most representative studies and data on the risk of CVD from low-dose radiation in people with occupational exposure. We reported the results of 27 articles selected from a database search of 1151 studies. The results show a complex evidence landscape on the relationship between radiation exposure and cardiovascular disease. In general, published papers show a positive association between ionizing radiation exposure and dermal microcirculation damage, ischemic heart disease, and cerebrovascular disease. Overall, they highlight the need for comprehensive and detailed research to clarify this relationship. Due to limited statistical power, the dose-risk relationship below 0.5 Gy is inconclusive, but if this relationship is found to have no threshold, it could have a significant impact on current estimates of health risks at low doses.
Collapse
Affiliation(s)
- Guglielmo Manenti
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Luca Coppeta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.)
| | - Ivan Valentinov Kirev
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Greta Verno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.)
| | - Francesco Garaci
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (L.C.); (G.V.)
| | - Roberto Floris
- Department of Diagnostic and Interventional Radiology, Molecular Imaging and Radiotherapy, PTV Foundation, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Thariat J, Little MP, Zablotska LB, Samson P, O’Banion MK, Leuraud K, Bergom C, Girault G, Azimzadeh O, Bouffler S, Hamada N. Radiotherapy for non-cancer diseases: benefits and long-term risks. Int J Radiat Biol 2024; 100:505-526. [PMID: 38180039 PMCID: PMC11039429 DOI: 10.1080/09553002.2023.2295966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The discovery of X-rays was followed by a variety of attempts to treat infectious diseases and various other non-cancer diseases with ionizing radiation, in addition to cancer. There has been a recent resurgence of interest in the use of such radiotherapy for non-cancer diseases. Non-cancer diseases for which use of radiotherapy has currently been proposed include refractory ventricular tachycardia, neurodegenerative diseases (e.g. Alzheimer's disease and dementia), and Coronavirus Disease 2019 (COVID-19) pneumonia, all with ongoing clinical studies that deliver radiation doses of 0.5-25 Gy in a single fraction or in multiple daily fractions. In addition to such non-cancer effects, historical indications predominantly used in some countries (e.g. Germany) include osteoarthritis and degenerative diseases of the bones and joints. This narrative review gives an overview of the biological rationale and ongoing preclinical and clinical studies for radiotherapy proposed for various non-cancer diseases, discusses the plausibility of the proposed biological rationale, and considers the long-term radiation risks of cancer and non-cancer diseases. CONCLUSIONS A growing body of evidence has suggested that radiation represents a double-edged sword, not only for cancer, but also for non-cancer diseases. At present, clinical evidence has shown some beneficial effects of radiotherapy for ventricular tachycardia, but there is little or no such evidence of radiotherapy for other newly proposed non-cancer diseases (e.g. Alzheimer's disease, COVID-19 pneumonia). Patients with ventricular tachycardia and COVID-19 pneumonia have thus far been treated with radiotherapy when they are an urgent life threat with no efficient alternative treatment, but some survivors may encounter a paradoxical situation where patients were rescued by radiotherapy but then get harmed by radiotherapy. Further studies are needed to justify the clinical use of radiotherapy for non-cancer diseases, and optimize dose to diseased tissue while minimizing dose to healthy tissue.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Comprehensive Cancer Centre François Baclesse, Caen, France
- Laboratoire de Physique Corpusculaire IN2P3, ENSICAEN/CNRS UMR 6534, Normandie Université, Caen, France
| | - Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Pamela Samson
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - M. Kerry O’Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Klervi Leuraud
- Research Department on Biological and Health Effects of Ionizing Radiation (SESANE), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Carmen Bergom
- Department of Radiation Oncology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardio-Oncology Center of Excellence, Washington University, St. Louis, Missouri, USA
| | - Gilles Girault
- Comprehensive Cancer Centre François Baclesse, Medical Library, Caen, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, Neuherberg, Germany
| | - Simon Bouffler
- Radiation Protection Sciences Division, UK Health Security Agency (UKHSA), Chilton, Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Abiko, Chiba, Japan
| |
Collapse
|
8
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|