1
|
Sharp JA, Sparago E, Thomas R, Alimenti K, Wang W, Blower MD. Role of the SAF-A/HNRNPU SAP domain in X chromosome inactivation, nuclear dynamics, transcription, splicing, and cell proliferation. PLoS Genet 2025; 21:e1011719. [PMID: 40493679 DOI: 10.1371/journal.pgen.1011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 05/08/2025] [Indexed: 06/18/2025] Open
Abstract
SAF-A/HNRNPU is conserved throughout vertebrates and has emerged as an important factor regulating a multitude of nuclear functions, including lncRNA localization, gene expression, and splicing. Here we show the SAF-A protein is highly dynamic and interacts with nascent transcripts as part of this dynamic movement. This finding revises current models of SAF-A: rather than being part of a static nuclear scaffold/matrix structure that acts as a stable tether between RNA and chromatin, SAF-A executes nuclear functions as a dynamic protein, suggesting contacts between SAF-A, RNA, and chromatin are more high turnover interactions than previously appreciated. SAF-A has several functional domains, including an N-terminal SAP domain that binds directly to DNA and RNA. Phosphorylation of SAP domain serines S14 and S26 are important for SAF-A localization and function during mitosis, however whether these serines are involved in interphase functions of SAF-A is not known. In this study we tested for the role of the SAP domain, and SAP domain serines S14 and S26 in X chromosome inactivation, protein dynamics, gene expression, splicing, and cell proliferation. Here we show that the SAP domain, and SAP domain serines S14 and S26 are required to maintain XIST RNA localization and XIST-dependent histone modifications on the inactive X chromosome, to execute normal protein dynamics, and to maintain normal cell proliferation. In addition, we present evidence that a Xi localization signal resides in the SAP domain, enabling SAF-A to engage with the Xi compartment in a manner distinct from other nuclear territories. We found that the SAP domain is not required to maintain gene expression and plays only a minor role in mRNA splicing. We propose a model whereby dynamic phosphorylation of SAF-A serines S14 and S26 mediates rapid turnover of SAF-A interactions with nuclear structures during interphase. Our data suggest that different nuclear compartments may have distinct requirements for the SAF-A SAP domain to execute nuclear functions, a level of control that was not previously known.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Emily Sparago
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Rachael Thomas
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Kaitlyn Alimenti
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Wei Wang
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Michael D Blower
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
2
|
Sharp JA, Sparago E, Thomas R, Alimenti K, Wang W, Blower MD. Role of the SAF-A SAP domain in X inactivation, transcription, splicing, and cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612041. [PMID: 39314300 PMCID: PMC11419091 DOI: 10.1101/2024.09.09.612041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
SAF-A is conserved throughout vertebrates and has emerged as an important factor regulating a multitude of nuclear functions, including lncRNA localization, gene expression, and splicing. SAF-A has several functional domains, including an N-terminal SAP domain that binds directly to DNA. Phosphorylation of SAP domain serines S14 and S26 are important for SAF-A localization and function during mitosis, however whether these serines are involved in interphase functions of SAF-A is not known. In this study we tested for the role of the SAP domain, and SAP domain serines S14 and S26 in X chromosome inactivation, protein dynamics, gene expression, splicing, and cell proliferation. Here we show that the SAP domain serines S14 and S26 are required to maintain XIST RNA localization and polycomb-dependent histone modifications on the inactive X chromosome in female cells. In addition, we present evidence that an Xi localization signal resides in the SAP domain. We found that that the SAP domain is not required to maintain gene expression and plays only a minor role in mRNA splicing. In contrast, the SAF-A SAP domain, in particular serines S14 and S26, are required for normal protein dynamics, and to maintain normal cell proliferation. We propose a model whereby dynamic phosphorylation of SAF-A serines S14 and S26 mediates rapid turnover of SAF-A interactions with DNA during interphase.
Collapse
Affiliation(s)
- Judith A. Sharp
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Emily Sparago
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Rachael Thomas
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Kaitlyn Alimenti
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Wei Wang
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| | - Michael D. Blower
- Department of Biochemistry and Cell Biology, Chobanian and Avedisian School of Medicine, Boston University, 72 E. Concord St, K112, Boston, MA 02118
| |
Collapse
|
3
|
Zhang D, Li L, Li M, Cao X. Biological functions and clinic significance of SAF‑A (Review). Biomed Rep 2024; 20:88. [PMID: 38665420 PMCID: PMC11040223 DOI: 10.3892/br.2024.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.
Collapse
Affiliation(s)
- Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengni Li
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
4
|
Miyaji M, Kawano S, Furuta R, Murakami E, Ikeda S, Tsutsui KM, Tsutsui K. Selective DNA-binding of SP120 (rat ortholog of human hnRNP U) is mediated by arginine-glycine rich domain and modulated by RNA. PLoS One 2023; 18:e0289599. [PMID: 37540655 PMCID: PMC10403129 DOI: 10.1371/journal.pone.0289599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
A human protein heterogeneous ribonucleoprotein U (hnRNP U) also known as Scaffold attachment factor A (SAF-A) and its orthologous rat protein SP120 are abundant and multifunctional nuclear protein that directly binds to both DNA and RNA. The C-terminal region of hnRNP U enriched with arginine and glycine is essential for the interaction with RNA and the N-terminal region of SAF-A termed SAP domain has been ascribed to the DNA binding. We have reported that rat hnRNP U specifically and cooperatively binds to AT-rich DNA called nuclear scaffold/matrix-associated region (S/MAR) although its detailed mechanism remained unclear. In the present study analysis of hnRNP U deletion mutants revealed for the first time that a C-terminal domain enriched with Arg-Gly (defined here as 'RG domain') is predominantly important for the S/MAR-selective DNA binding activities. RG domain alone directly bound to S/MAR and coexistence with the SAP domain exerted a synergistic effect. The binding was inhibited by netropsin, a minor groove binder with preference to AT pairs that are enriched in S/MAR, suggesting that RG domain interacts with minor groove of S/MAR DNA. Interestingly, excess amounts of RNA attenuated the RG domain-dependent S/MAR-binding of hnRNP U. Taken together, hnRNP U may be the key element for the RNA-regulated recognition of S/MAR DNA and thus contributing to the dynamic structural changes of chromatin compartments.
Collapse
Affiliation(s)
- Mary Miyaji
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shinji Kawano
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Ryohei Furuta
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Emi Murakami
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Shogo Ikeda
- Faculty of Science, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Kimiko M Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Tsutsui
- Department of Neurogenomics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Valledor M, Byron M, Dumas B, Carone DM, Hall LL, Lawrence JB. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Cell Rep 2023; 42:112686. [PMID: 37384527 PMCID: PMC10461597 DOI: 10.1016/j.celrep.2023.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brett Dumas
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
6
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
7
|
Bonczek O, Wang L, Gnanasundram SV, Chen S, Haronikova L, Zavadil-Kokas F, Vojtesek B. DNA and RNA Binding Proteins: From Motifs to Roles in Cancer. Int J Mol Sci 2022; 23:ijms23169329. [PMID: 36012592 PMCID: PMC9408909 DOI: 10.3390/ijms23169329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
Collapse
Affiliation(s)
- Ondrej Bonczek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
- Correspondence: (O.B.); (B.V.)
| | - Lixiao Wang
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | | | - Sa Chen
- Department of Medical Biosciences, Umea University, 90187 Umea, Sweden
| | - Lucia Haronikova
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute (MMCI), Zluty Kopec 7, 656 53 Brno, Czech Republic
- Correspondence: (O.B.); (B.V.)
| |
Collapse
|
8
|
Jones AN, Graß C, Meininger I, Geerlof A, Klostermann M, Zarnack K, Krappmann D, Sattler M. Modulation of pre-mRNA structure by hnRNP proteins regulates alternative splicing of MALT1. SCIENCE ADVANCES 2022; 8:eabp9153. [PMID: 35921415 PMCID: PMC9348792 DOI: 10.1126/sciadv.abp9153] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses. Alternative splicing of MALT1 is critical for controlling optimal T cell activation. We demonstrate that MALT1 splicing depends on RNA structural elements that sequester the splice sites of the alternatively spliced exon7. The RBPs hnRNP U and hnRNP L bind competitively to stem-loop RNA structures that involve the 5' and 3' splice sites flanking exon7. While hnRNP U stabilizes RNA stem-loop conformations that maintain exon7 skipping, hnRNP L disrupts these RNA elements to facilitate recruitment of the essential splicing factor U2AF2, thereby promoting exon7 inclusion. Our data represent a paradigm for the control of splice site selection by differential RBP binding and modulation of pre-mRNA structure.
Collapse
Affiliation(s)
- Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, 85748 München, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Isabel Meininger
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Corresponding author. (D.K.); (M.S.)
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, Garching, 85748 München, Germany
- Corresponding author. (D.K.); (M.S.)
| |
Collapse
|
9
|
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O, Reiner O. Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun 2022; 13:4209. [PMID: 35864088 PMCID: PMC9304408 DOI: 10.1038/s41467-022-31752-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
HNRNPU encodes the heterogeneous nuclear ribonucleoprotein U, which participates in RNA splicing and chromatin organization. Microdeletions in the 1q44 locus encompassing HNRNPU and other genes and point mutations in HNRNPU cause brain disorders, including early-onset seizures and severe intellectual disability. We aimed to understand HNRNPU’s roles in the developing brain. Our work revealed that HNRNPU loss of function leads to rapid cell death of both postmitotic neurons and neural progenitors, with an apparent higher sensitivity of the latter. Further, expression and alternative splicing of multiple genes involved in cell survival, cell motility, and synapse formation are affected following Hnrnpu’s conditional truncation. Finally, we identified pharmaceutical and genetic agents that can partially reverse the loss of cortical structures in Hnrnpu mutated embryonic brains, ameliorate radial neuronal migration defects and rescue cultured neural progenitors’ cell death. HNRNPU is an RNA splicing protein associated with brain disorders such as early onset seizures. Here they show that HNRNPU functions to maintain neural progenitors and their progeny by regulating splicing of key neuronal genes.
Collapse
Affiliation(s)
- Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ingrid E Scheffer
- The University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, VIC, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Sofi S, Williamson L, Turvey GL, Scoynes C, Hirst C, Godwin J, Brockdorff N, Ainscough J, Coverley D. Prion-like domains drive CIZ1 assembly formation at the inactive X chromosome. J Biophys Biochem Cytol 2022; 221:213067. [PMID: 35289833 PMCID: PMC8927971 DOI: 10.1083/jcb.202103185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
CIZ1 forms large assemblies at the inactive X chromosome (Xi) in female fibroblasts in an Xist lncRNA-dependent manner and is required for accurate maintenance of polycomb targets genome-wide. Here we address requirements for assembly formation and show that CIZ1 undergoes two direct interactions with Xist, via independent N- and C-terminal domains. Interaction with Xist, assembly at Xi, and complexity of self-assemblies formed in vitro are modulated by two alternatively spliced glutamine-rich prion-like domains (PLD1 and 2). PLD2 is dispensable for accumulation at existing CIZ1-Xi assemblies in wild-type cells but is required in CIZ1-null cells where targeting, assembly, and enrichment for H3K27me3 and H2AK119ub occur de novo. In contrast, PLD1 is required for both de novo assembly and accumulation at preexisting assemblies and, in vitro, drives formation of a stable fibrillar network. Together they impart affinity for RNA and a complex relationship with repeat E of Xist. These data show that alternative splicing of two PLDs modulates CIZ1's ability to build large RNA-protein assemblies.
Collapse
Affiliation(s)
- Sajad Sofi
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Louisa Williamson
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Gabrielle L Turvey
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Charlotte Scoynes
- Department of Biology, University of York, York, UK.,College of Science and Engineering, University of Edinburgh, Edinburgh, UK
| | - Claire Hirst
- Department of Biology, University of York, York, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Justin Ainscough
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Dawn Coverley
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
11
|
Tang X, Deng Z, Ding P, Qiang W, Lu Y, Gao S, Hu Y, Yang Y, Du J, Gu C. A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:85. [PMID: 35260179 PMCID: PMC8903708 DOI: 10.1186/s13046-022-02276-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Backgroud Multiple myeloma (MM) is an incurable plasma cell malignancy in the bone marrow (BM), while immunoglobulin D type of MM (IgD MM) is a very rare but most severe subtype in all MM cases. Therefore, systemic study on IgD MM is purposeful to disclose the recurrent and refractory features in both IgD and other types of MM, and beneficial to the development of potent therapeutic strategy on MM. Methods Agilent SBC-ceRNA microarray chips were employed to examine 3 normal plasma cell samples (NPCs), 5 lgD MM samples and 5 lgG MM samples, respectively. Sanger sequencing, RNase R digestion and qPCR assays were used to detect the existence and expression of circHNRNPU. BaseScope™ RNA ISH assay was performed to test circHNRNPU levels in paraffin-embedded MM tissues. The protein encoded by circHNRNPU was identified by LC-MS/MS, which was named as circHNRNPU_603aa. The function of circHNRNPU_603aa on cellular proliferation and cell cycle was assessed by MTT test, colony formation assay, flow cytometry and MM xenograft mouse model in vivo. RIP-seq, RIP-PCR and WB analysis for ubiquitination were performed to explore the potential mechanism of circHNRNPU_603aa in MM. Exosomes were isolated from the culture supernatant of MM cells by ultracentrifugation and characterized by Transmission Electron Microscope and WB confirmation of exosomes markers Alix and CD9. Results CircHNRNPU was one of the top most abundant and differentially expressed circRNA in IgD MM relative to lgG and NPCs samples. Increased circHNRNPU was associated with poor outcomes in four independent MM patient cohorts. Intriguingly, MM cells secreted circHNRNPU, which encoded a protein named as circHNRNPU_603aa. Overexpressed circHNRNPU_603aa promoted MM cell proliferation in vitro and in vivo, in contrast knockdown of circHNRNPU_603aa by siRNA abrogated these effects. Due to circHNRNPU_603aa including RNA-binding RGG-box region, it regulated SKP2 exon skipping, thereby competitively inhibited c-Myc ubiquitin so as to stabilize c-Myc in MM. MM cells secreted circHNRNPU through exosomes to interfere with various cells in the BM microenvironment. Conclusion Our findings demonstrate that circHNRNPU_603aa is a promising diagnostic and therapeutic marker in both MM cells and BM niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02276-7.
Collapse
Affiliation(s)
- Xiaozhu Tang
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhendong Deng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanting Qiang
- Department of Hematology, Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yue Lu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shengyao Gao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Juan Du
- Department of Hematology, Myeloma & Lymphoma Center, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China. .,School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
12
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
13
|
Kolpa HJ, Creamer KM, Hall LL, Lawrence JB. SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome 2021; 33:366-381. [PMID: 34859278 PMCID: PMC9114059 DOI: 10.1007/s00335-021-09935-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
Here we provide a brief review of relevant background before presenting results of our investigation into the interplay between scaffold attachment factor A (SAF-A), chromatin-associated RNAs, and DNA condensation. SAF-A, also termed heterogenous nuclear protein U (hnRNP U), is a ubiquitous nuclear scaffold protein that was implicated in XIST RNA localization to the inactive X-chromosome (Xi) but also reported to maintain open DNA packaging in euchromatin. Here we use several means to perturb SAF-A and examine potential impacts on the broad association of RNAs on euchromatin, and on chromatin compaction. SAF-A has an N-terminal DNA binding domain and C-terminal RNA binding domain, and a prominent model has been that the protein provides a single-molecule bridge between XIST RNA and chromatin. Here analysis of the impact of SAF-A on broad RNA-chromatin interactions indicate greater biological complexity. We focus on SAF-A's role with repeat-rich C0T-1 hnRNA (repeat-rich heterogeneous nuclear RNA), shown recently to comprise mostly intronic sequences of pre-mRNAs and diverse long non-coding RNAs (lncRNAs). Our results show that SAF-A mutants cause dramatic changes to cytological chromatin condensation through dominant negative effects on C0T-1 RNA's association with euchromatin, and likely other nuclear scaffold factors. In contrast, depletion of SAF-A by RNA interference (RNAi) had no discernible impact on C0T-1 RNA, nor did it cause similarly marked chromatin changes as did three different SAF-A mutations. Overall results support the concept that repeat-rich, chromatin-associated RNAs interact with multiple RNA binding proteins (RBPs) in a complex dynamic meshwork that is integral to larger-scale chromatin architecture and collectively influences cytological-scale DNA condensation.
Collapse
Affiliation(s)
- Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Ashfield MedComms, Lyndhurst, NJ, 07071, USA
| | - Kevin M Creamer
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, 01655, USA. .,Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
14
|
Marenda M, Lazarova E, Gilbert N. The role of SAF-A/hnRNP U in regulating chromatin structure. Curr Opin Genet Dev 2021; 72:38-44. [PMID: 34823151 DOI: 10.1016/j.gde.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023]
Abstract
Scaffold attachment factor A (SAF-A) or hnRNP U is a nuclear RNA-binding protein with a well-documented role in processing newly transcribed RNA. Recent studies also indicate that SAF-A can oligomerise in an ATP-dependent manner and interact with RNA to form a dynamic nuclear mesh. This mesh is thought to regulate nuclear and chromatin architecture, yet a mechanistic understanding is lacking. Here, we review developments in the field to understand how the SAF-A/RNA mesh affects chromatin organisation in interphase and mitosis. As SAF-A has an intrinsically disordered domain we discuss how the chromatin mesh is related to nuclear phase-separated condensates, which in other situations have been shown to regulate transcription and cell functions. Finally, we infer possible links between diseases emerging from SAF-A mutations and its role in chromatin organisation and regulation.
Collapse
Affiliation(s)
- Mattia Marenda
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Elena Lazarova
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
15
|
Ha N, Ding N, Hong R, Liu R, Roca X, Luo Y, Duan X, Wang X, Ni P, Wu H, Zhang LF, Chen L. The lupus autoantigen La/Ssb is an Xist-binding protein involved in Xist folding and cloud formation. Nucleic Acids Res 2021; 49:11596-11613. [PMID: 34723322 PMCID: PMC8599922 DOI: 10.1093/nar/gkab1003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Using the programmable RNA-sequence binding domain of the Pumilio protein, we FLAG-tagged Xist (inactivated X chromosome specific transcript) in live mouse cells. Affinity pulldown coupled to mass spectrometry was employed to identify a list of 138 candidate Xist-binding proteins, from which, Ssb (also known as the lupus autoantigen La) was validated as a protein functionally critical for X chromosome inactivation (XCI). Extensive XCI defects were detected in Ssb knockdown cells, including chromatin compaction, death of female mouse embryonic stem cells during in vitro differentiation and chromosome-wide monoallelic gene expression pattern. Live-cell imaging of Xist RNA reveals the defining XCI defect: Xist cloud formation. Ssb is a ubiquitous and versatile RNA-binding protein with RNA chaperone and RNA helicase activities. Functional dissection of Ssb shows that the RNA chaperone domain plays critical roles in XCI. In Ssb knockdown cells, Xist transcripts are unstable and misfolded. These results show that Ssb is critically involved in XCI, possibly as a protein regulating the in-cell structure of Xist.
Collapse
Affiliation(s)
- Norbert Ha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Nan Ding
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ru Hong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Rubing Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yingyuan Luo
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaowei Duan
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiao Wang
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peiling Ni
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Haiyang Wu
- TCRCure Biological Technology Co Ltd., Guangdong, China
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- TCRCure Biological Technology Co Ltd., Guangdong, China
| | - Lingyi Chen
- Institute of Translational Medicine, Tianjin Union Medical Center, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Protein Sciences, National Demonstration Center for Experimental Biology Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
|
17
|
Creamer KM, Kolpa HJ, Lawrence JB. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol Cell 2021; 81:3509-3525.e5. [PMID: 34320406 DOI: 10.1016/j.molcel.2021.07.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Nuclear chromosomes transcribe far more RNA than required to encode protein. Here we investigate whether non-coding RNA broadly contributes to cytological-scale chromosome territory architecture. We develop a procedure that depletes soluble proteins, chromatin, and most nuclear RNA from the nucleus but does not delocalize XIST, a known architectural RNA, from an insoluble chromosome "scaffold." RNA-seq analysis reveals that most RNA in the nuclear scaffold is repeat-rich, non-coding, and derived predominantly from introns of nascent transcripts. Insoluble, repeat-rich (C0T-1) RNA co-distributes with known scaffold proteins including scaffold attachment factor A (SAF-A), and distribution of these components inversely correlates with chromatin compaction in normal and experimentally manipulated nuclei. We further show that RNA is required for SAF-A to interact with chromatin and for enrichment of structurally embedded "scaffold attachment regions" prevalent in euchromatin. Collectively, the results indicate that long nascent transcripts contribute a dynamic structural role that promotes the open architecture of active chromosome territories.
Collapse
Affiliation(s)
- Kevin Michael Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Heather Jill Kolpa
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jeanne Bentley Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
18
|
trans-Acting Factors and cis Elements Involved in the Human Inactive X Chromosome Organization and Compaction. Genet Res (Camb) 2021; 2021:6683460. [PMID: 34035662 PMCID: PMC8121581 DOI: 10.1155/2021/6683460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
During X chromosome inactivation, many chromatin changes occur on the future inactive X chromosome, including acquisition of a variety of repressive covalent histone modifications, heterochromatin protein associations, and DNA methylation of promoters. Here, we summarize trans-acting factors and cis elements that have been shown to be involved in the human inactive X chromosome organization and compaction.
Collapse
|
19
|
Sharp JA, Perea-Resa C, Wang W, Blower MD. Cell division requires RNA eviction from condensing chromosomes. J Cell Biol 2021; 219:211450. [PMID: 33053167 PMCID: PMC7549315 DOI: 10.1083/jcb.201910148] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, the genome is transformed from a decondensed, transcriptionally active state to a highly condensed, transcriptionally inactive state. Mitotic chromosome reorganization is marked by the general attenuation of transcription on chromosome arms, yet how the cell regulates nuclear and chromatin-associated RNAs after chromosome condensation and nuclear envelope breakdown is unknown. SAF-A/hnRNPU is an abundant nuclear protein with RNA-to-DNA tethering activity, coordinated by two spatially distinct nucleic acid–binding domains. Here we show that RNA is evicted from prophase chromosomes through Aurora-B–dependent phosphorylation of the SAF-A DNA-binding domain; failure to execute this pathway leads to accumulation of SAF-A–RNA complexes on mitotic chromosomes, defects in metaphase chromosome alignment, and elevated rates of chromosome missegregation in anaphase. This work reveals a role for Aurora-B in removing chromatin-associated RNAs during prophase and demonstrates that Aurora-B–dependent relocalization of SAF-A during cell division contributes to the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Wei Wang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Puvvula PK, Moon AM. Novel Cell-Penetrating Peptides Derived From Scaffold-Attachment- Factor A Inhibits Cancer Cell Proliferation and Survival. Front Oncol 2021; 11:621825. [PMID: 33859938 PMCID: PMC8042391 DOI: 10.3389/fonc.2021.621825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Scaffold-attachment-factor A (SAFA) has important roles in many normal and pathologic cellular processes but the scope of its function in cancer cells is unknown. Here, we report dominant-negative activity of novel peptides derived from the SAP and RGG-domains of SAFA and their effects on proliferation, survival and the epigenetic landscape in a range of cancer cell types. The RGG-derived peptide dysregulates SAFA binding and regulation of alternatively spliced targets and decreases levels of key spliceosome proteins in a cell-type specific manner. In contrast, the SAP-derived peptide reduces active histone marks, promotes chromatin compaction, and activates the DNA damage response and cell death in a subset of cancer cell types. Our findings reveal an unprecedented function of SAFA-derived peptides in regulating diverse SAFA molecular functions as a tumor suppressive mechanism and demonstrate the potential therapeutic utility of SAFA-peptides in a wide range of cancer cells.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, United States.,Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Mechanisms of Long Noncoding RNA Nuclear Retention. Trends Biochem Sci 2020; 45:947-960. [DOI: 10.1016/j.tibs.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
|
22
|
Brooks W. An Epigenetics-Based Hypothesis of Autoantigen Development in Systemic Lupus Erythematosus. EPIGENOMES 2020; 4:epigenomes4020006. [PMID: 34968240 PMCID: PMC8594704 DOI: 10.3390/epigenomes4020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
Currently, we have a limited understanding of mechanisms leading to systemic lupus erythematosus, but we know that genetics, environmental factors, and epigenetics contribute to the disease. One common aspect of the various environmental triggers is that they can cause cellular stress. When extraordinary stress occurs, such as viral activation, a cell's response can include increased nucleolar volume and activity to produce more machinery (e.g., ribosomes) to help the cell recover. However, nucleolar expansion can disrupt the epigenetic control in neighboring heterochromatin that comprises the nucleolar shell. This disruption can open underlying vulnerabilities that provoke an autoimmune reaction. Here, we review the "X chromosome-nucleolus nexus" hypothesis, which explains how nucleolar stress can disrupt epigenetically silenced chromatin, especially the neighboring inactive X chromosome (aka the nucleolar satellite). Chromatin disruption can lead to the expression of sequestered DNA, such as Alu elements and fully functional LINE-1 reverse transcriptase genes. In addition, Alu transcripts can disrupt the nucleolar structural integrity, leading to nucleolar disintegration. Such disintegration can leave nucleolar components and products in autoantigenic forms, such as abnormal conformations or incomplete macromolecular assemblies. Recent research on DNA sensing pathways can now be incorporated into the hypothesis to provide further details explaining how autoantibodies to endogenous nucleic acids arise.
Collapse
Affiliation(s)
- Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
23
|
Yugami M, Okano H, Nakanishi A, Yano M. Analysis of the nucleocytoplasmic shuttling RNA-binding protein HNRNPU using optimized HITS-CLIP method. PLoS One 2020; 15:e0231450. [PMID: 32302342 PMCID: PMC7164624 DOI: 10.1371/journal.pone.0231450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
RNA-binding proteins (RBPs) control many types of post-transcriptional regulation, including mRNA splicing, mRNA stability, and translational efficiency, by directly binding to their target RNAs and their mutation and dysfunction are often associated with several human neurological diseases and tumorigenesis. Crosslinking immunoprecipitation (CLIP), coupled with high-throughput sequencing (HITS-CLIP), is a powerful technique for investigating the molecular mechanisms underlying disease pathogenesis by comprehensive identification of RBP target sequences at the transcriptome level. However, HITS-CLIP protocol is still required for some optimization due to experimental complication, low efficiency and time-consuming, whose library has to be generated from very small amounts of RNAs. Here we improved a more efficient, rapid, and reproducible CLIP method by optimizing BrdU-CLIP. Our protocol produced a 10-fold greater yield of pre-amplified CLIP library, which resulted in a low duplicate rate of CLIP-tag reads because the number of PCR cycles required for library amplification was reduced. Variance of the yields was also reduced, and the experimental period was shortened by 2 days. Using this, we validated IL-6 expression by a nuclear RBP, HNRNPU, which directly binds the 3’-UTR of IL-6 mRNA in HeLa cells. Importantly, this interaction was only observed in the cytoplasmic fraction, suggesting a role of cytoplasmic HNRNPU in mRNA stability control. This optimized method enables us to accurately identify target genes and provides a snapshot of the protein-RNA interactions of nucleocytoplasmic shuttling RBPs.
Collapse
Affiliation(s)
- Masato Yugami
- Takeda Pharmaceutical Company, Ltd, Osaka, Japan
- * E-mail: (MYu); (MYa)
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
| | | | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, Minato, Japan
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- * E-mail: (MYu); (MYa)
| |
Collapse
|
24
|
Abstract
The non-coding RNA Xist regulates the process of X chromosome inactivation, in which one of the two X chromosomes present in cells of early female mammalian embryos is selectively and coordinately shut down. Remarkably Xist RNA functions in cis, affecting only the chromosome from which it is transcribed. This feature is attributable to the unique propensity of Xist RNA to accumulate over the territory of the chromosome on which it is synthesized, contrasting with the majority of RNAs that are rapidly exported out of the cell nucleus. In this review I provide an overview of the progress that has been made towards understanding localized accumulation of Xist RNA, drawing attention to evidence that some other non-coding RNAs probably function in a highly analogous manner. I describe a simple model for localized accumulation of Xist RNA and discuss key unresolved questions that need to be addressed in future studies.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
25
|
Long noncoding RNA PANDA promotes esophageal squamous carcinoma cell progress by dissociating from NF-YA but interact with SAFA. Pathol Res Pract 2019; 215:152604. [DOI: 10.1016/j.prp.2019.152604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/03/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
|
26
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
27
|
Chu WK, Hung LM, Hou CW, Chen JK. Heterogeneous ribonucleoprotein F regulates YAP expression via a G-tract in 3'UTR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:12-24. [PMID: 30312683 DOI: 10.1016/j.bbagrm.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
The Yes-associated protein (YAP) is a transcription coactivator that plays crucial roles in organ size control and tumorigenesis, and was demonstrated to be inhibited by the Hippo signaling pathway. To date, the molecular mechanisms regulating the expression of YAP in human cells remain unknown. In the present study, we found that hnRNP F and hnRNP U negatively regulate YAP expression. We also showed that downregulation of YAP expression by hnRNP F and hnRNP U was not at the transcriptional level. Knockdown of hnRNP F or hnRNP U increased YAP mRNA stability, suggesting the downregulation of YAP expression was by a post-transcriptional mechanism. A putative hnRNP F binding site was identified in the YAP 3'UTR at 685 to 698, and deletion of this putative hnRNP F element abolished the down-regulation effect of YAP mRNA stability by hnRNP F. Binding of the hnRNP F to the YAP 3'UTR was demonstrated by Cross-linked RNA Immunoprecipitation. mRNA stability is a possible secondary effect of alternative splicing or other nuclear process. Understanding the regulation of YAP expression would provide insights into the mechanisms underlying the maintenance of tissue size homeostasis and tumorigenesis.
Collapse
Affiliation(s)
- Wing-Keung Chu
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Man Hung
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wei Hou
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
28
|
Li W, Hong R, Lai LT, Dong Q, Ni P, Chelliah R, Huq M, Ismail SNB, Chandola U, Ang Z, Lin B, Chen X, Chen L, Zhang LF. Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. J Mol Biol 2018; 430:2734-2746. [DOI: 10.1016/j.jmb.2018.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
|
29
|
Monfort A, Wutz A. Progress in understanding the molecular mechanism of Xist RNA function through genetics. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0368. [PMID: 28947663 DOI: 10.1098/rstb.2016.0368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 01/06/2023] Open
Abstract
The Xist gene produces a long noncoding RNA that initiates chromosome-wide gene repression on the inactive X chromosome in female mammals. Recent progress has advanced the understanding of Xist function at the molecular level. This review provides an overview of insights from genetic approaches and puts the new data in the context of an emerging mechanistic model as well as the existing literature. Some consideration is given on how independent biochemical studies on X inactivation help to advance on the wider question of chromatin regulation in the mammalian dosage compensation system.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8049 Zurich, Switzerland
| |
Collapse
|
30
|
Abstract
Immunodetection of nuclear antigens is often complicated by epitope masking, so that proteins known to function in the nucleus are sometimes not easily detected at their sites of action. Moreover, protein populations that are detected before unmasking can be very different to those seen after removal of nucleic acids. This is particularly true for components of the nuclear matrix, including those known to function at the inactive X chromosome. Here we describe an unmasking protocol that reveals previously undetected proteins at the inactive X chromosome in mouse fibroblasts.
Collapse
Affiliation(s)
- Emma R Stewart
- Department of Biology, University of York, Wentworth Way, UK.
| | - Dawn Coverley
- Department of Biology, University of York, Wentworth Way, UK.
| |
Collapse
|
31
|
Pintacuda G, Young AN, Cerase A. Function by Structure: Spotlights on Xist Long Non-coding RNA. Front Mol Biosci 2017; 4:90. [PMID: 29302591 PMCID: PMC5742192 DOI: 10.3389/fmolb.2017.00090] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
Recent experimental evidence indicates that lncRNAs can act as regulatory molecules in the context of development and disease. Xist, the master regulator of X chromosome inactivation, is a classic example of how lncRNAs can exert multi-layered and fine-tuned regulatory functions, by acting as a molecular scaffold for recruitment of distinct protein factors. In this review, we discuss the methodologies employed to define Xist RNA structures and the tight interplay between structural clues and functionality of lncRNAs. This model of modular function dictated by structure, can be also generalized to other lncRNAs, beyond the field of X chromosome inactivation, to explain common features of similarly folded RNAs.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Andrea Cerase
- European Molecular Biology Laboratory, Monterotondo, Italy
| |
Collapse
|
32
|
Kolpa HJ, Fackelmayer FO, Lawrence JB. SAF-A Requirement in Anchoring XIST RNA to Chromatin Varies in Transformed and Primary Cells. Dev Cell 2017; 39:9-10. [PMID: 27728783 DOI: 10.1016/j.devcel.2016.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heather J Kolpa
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Frank O Fackelmayer
- Laboratory of Epigenetics and Chromosome Biology, Department of Biomedical Research, Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas (IMBB-FORTH), University Campus Building E5, 45110 Ioannina, Greece
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
33
|
Creamer KM, Lawrence JB. XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160360. [PMID: 28947659 PMCID: PMC5627162 DOI: 10.1098/rstb.2016.0360] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
XIST RNA triggers the transformation of an active X chromosome into a condensed, inactive Barr body and therefore provides a unique window into transitions of higher-order chromosome architecture. Despite recent progress, how XIST RNA localizes and interacts with the X chromosome remains poorly understood. Genetic engineering of XIST into a trisomic autosome demonstrates remarkable capacity of XIST RNA to localize and comprehensively silence that autosome. Thus, XIST does not require X chromosome-specific sequences but operates on mechanisms available genome-wide. Prior results suggested XIST localization is controlled by attachment to the insoluble nuclear scaffold. Our recent work affirms that scaffold attachment factor A (SAF-A) is involved in anchoring XIST, but argues against the view that SAF-A provides a unimolecular bridge between RNA and the chromosome. Rather, we suggest that a complex meshwork of architectural proteins interact with XIST RNA. Parallel work studying the territory of actively transcribed chromosomes suggests that repeat-rich RNA 'coats' euchromatin and may impact chromosome architecture in a manner opposite of XIST A model is discussed whereby RNA may not just recruit histone modifications, but more directly impact higher-order chromatin condensation via interaction with architectural proteins of the nucleus.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- K M Creamer
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - J B Lawrence
- Department of Neurology and Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
34
|
Patounas O, Papacharalampous I, Eckerich C, Markopoulos GS, Kolettas E, Fackelmayer FO. A novel splicing isoform of protein arginine methyltransferase 1 (PRMT1) that lacks the dimerization arm and correlates with cellular malignancy. J Cell Biochem 2017; 119:2110-2123. [PMID: 28857308 DOI: 10.1002/jcb.26373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/24/2017] [Indexed: 02/02/2023]
Abstract
Methylation of arginine residues is an important modulator of protein function that is involved in epigenetic gene regulation, DNA damage response and RNA maturation, as well as in cellular signaling. The enzymes that catalyze this post-translational modification are called protein arginine methyltransferases (PRMTs), of which PRMT1 is the predominant enzyme. Human PRMT1 has previously been shown to occur in seven splicing isoforms, which are differentially abundant in different tissues, and have distinct substrate specificity and intracellular localization. Here we characterize a novel splicing isoform which does not affect the amino-terminus of the protein like the seven known isoforms, but rather lacks exons 8 and 9 which encode the dimerization arm of the enzyme that is essential for enzymatic activity. Consequently, the isoform does not form catalytically active oligomers with the other endogenous PRMT1 isoforms. Photobleaching experiments reveal an immobile fraction of the enzyme in the nucleus, in accordance with earlier results from our laboratory that had shown a tight association of inhibited or inactivated PRMT1 with chromatin and the nuclear scaffold. Thus, it apparently is able to bind to the same substrates as catalytically active PRMT1. This isoform is found in a variety of cell lines, but is increased in those of cancer origin or after expression of the EMT-inducing transcriptional repressor Snail1. We discuss that the novel isoform could act as a modulator of PRMT1 activity in cancer cells by acting as a competitive inhibitor that shields substrates from access to active PRMT1 oligomers.
Collapse
Affiliation(s)
- Odysseas Patounas
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| | - Ioanna Papacharalampous
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Carmen Eckerich
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Ioannina, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Ioannina, Greece
| | - Frank O Fackelmayer
- Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Laboratory for Epigenetics and Chromosome Biology, Ioannina, Greece
| |
Collapse
|
35
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
36
|
Nozawa RS, Boteva L, Soares DC, Naughton C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M, Hill B, Duncan RR, Maciver SK, Gilbert N. SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell 2017. [PMID: 28622508 PMCID: PMC5473940 DOI: 10.1016/j.cell.2017.05.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Higher eukaryotic chromosomes are organized into topologically constrained functional domains; however, the molecular mechanisms required to sustain these complex interphase chromatin structures are unknown. A stable matrix underpinning nuclear organization was hypothesized, but the idea was abandoned as more dynamic models of chromatin behavior became prevalent. Here, we report that scaffold attachment factor A (SAF-A), originally identified as a structural nuclear protein, interacts with chromatin-associated RNAs (caRNAs) via its RGG domain to regulate human interphase chromatin structures in a transcription-dependent manner. Mechanistically, this is dependent on SAF-A's AAA+ ATPase domain, which mediates cycles of protein oligomerization with caRNAs, in response to ATP binding and hydrolysis. SAF-A oligomerization decompacts large-scale chromatin structure while SAF-A loss or monomerization promotes aberrant chromosome folding and accumulation of genome damage. Our results show that SAF-A and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes large-scale chromosome structures and protects the genome from instability.
Collapse
Affiliation(s)
- Ryu-Suke Nozawa
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Lora Boteva
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Dinesh C Soares
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alison R Dun
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adam Buckle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bernard Ramsahoye
- Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Peter C Bruton
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rebecca S Saleeb
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Maria Arnedo
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Bill Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Rory R Duncan
- Edinburgh Super-Resolution Imaging Consortium, Institute of Biological Chemistry, Biophysics, and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Sutherland K Maciver
- Centre for Integrative Physiology, Edinburgh Medical School, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
37
|
Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 2017; 31:876-888. [PMID: 28546514 PMCID: PMC5458755 DOI: 10.1101/gad.295907.117] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Here, Ridings-Figueroa et al. show that the nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. Their findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages. The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist. CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.
Collapse
Affiliation(s)
| | - Emma R Stewart
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatyana B Nesterova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Heather Coker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rose Wilson
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aidan Haslam
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fred Lilley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Renate Ruigrok
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ghadeer Albadrani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom.,Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Kingdom of Saudi Arabia
| | - William Mansfield
- Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jo-An Roulson
- Leeds Institute of Molecular Medicine (LIMM), University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Justin F X Ainscough
- Department of Biology, University of York, York YO10 5DD, United Kingdom.,Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
38
|
Postlmayr A, Wutz A. Insights into the Establishment of Chromatin States in Pluripotent Cells from Studies of X Inactivation. J Mol Biol 2017; 429:1521-1531. [PMID: 28315662 DOI: 10.1016/j.jmb.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
Animal development entails the sequential and coordinated specialization of cells. During cell differentiation, transcription factors, cell signaling pathways, and chromatin-associated protein complexes cooperate in regulating the expression of a large number of genes. Here, we review the present understanding of the establishment of chromatin states by focusing on X chromosome inactivation (XCI) as a model for facultative heterochromatin formation in female embryonic cells. The inactive X chromosome is large enough to be investigated by biochemical and microscopy techniques. In addition, the ability to compare the inactivated chromatin to the active X in male cells enables us to differentiate events specific to gene silencing during XCI from gene regulatory effects from changing pathways in the same cell. Findings in XCI are useful as blueprints for investigation of the action of epigenetic pathways in differentiation and lineage commitment. We summarize recent studies that have identified factors that are critical for chromosome-wide gene repression in XCI, and we discuss their implications for epigenetic regulation in pluripotent cells of the early embryo.
Collapse
Affiliation(s)
- Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland; Life Science Zurich Graduate School, Molecular Life Sciences Program, University of Zurich, 8049 Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
39
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
40
|
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17:756-770. [DOI: 10.1038/nrm.2016.126] [Citation(s) in RCA: 442] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
42
|
Pandya-Jones A, Plath K. The "lnc" between 3D chromatin structure and X chromosome inactivation. Semin Cell Dev Biol 2016; 56:35-47. [PMID: 27062886 DOI: 10.1016/j.semcdb.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022]
Abstract
The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilitates the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
43
|
Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci U S A 2016; 113:E2029-38. [PMID: 27001848 DOI: 10.1073/pnas.1520113113] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Females have a greater immunological advantage than men, yet they are more prone to autoimmune disorders. The basis for this sex bias lies in the X chromosome, which contains many immunity-related genes. Female mammals use X chromosome inactivation (XCI) to generate a transcriptionally silent inactive X chromosome (Xi) enriched with heterochromatic modifications and XIST/Xist RNA, which equalizes gene expression between the sexes. Here, we examine the maintenance of XCI in lymphocytes from females in mice and humans. Strikingly, we find that mature naïve T and B cells have dispersed patterns of XIST/Xist RNA, and they lack the typical heterochromatic modifications of the Xi. In vitro activation of lymphocytes triggers the return of XIST/Xist RNA transcripts and some chromatin marks (H3K27me3, ubiquitin-H2A) to the Xi. Single-cell RNA FISH analysis of female T cells revealed that the X-linked immunity genes CD40LG and CXCR3 are biallelically expressed in some cells. Using knockout and knockdown approaches, we find that Xist RNA-binding proteins, YY1 and hnRNPU, are critical for recruitment of XIST/Xist RNA back to the Xi. Furthermore, we examined B cells from patients with systemic lupus erythematosus, an autoimmune disorder with a strong female bias, and observed different XIST RNA localization patterns, evidence of biallelic expression of immunity-related genes, and increased transcription of these genes. We propose that the Xi in female lymphocytes is predisposed to become partially reactivated and to overexpress immunity-related genes, providing the first mechanistic evidence to our knowledge for the enhanced immunity of females and their increased susceptibility for autoimmunity.
Collapse
|
44
|
Maduro C, de Hoon B, Gribnau J. Fitting the Puzzle Pieces: the Bigger Picture of XCI. Trends Biochem Sci 2016; 41:138-147. [DOI: 10.1016/j.tibs.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/06/2023]
|
45
|
Simon MD. Insight into lncRNA biology using hybridization capture analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:121-7. [PMID: 26381323 DOI: 10.1016/j.bbagrm.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
Despite mounting evidence of the importance of large non-coding RNAs (lncRNAs) in biological regulation, we still know little about how these lncRNAs function. One approach to understand the function of lncRNAs is to biochemically purify endogenous lncRNAs from fixed cells using complementary oligonucleotides. These hybridization capture approaches can reveal the genomic localization of lncRNAs, as well as the proteins and RNAs with which they interact. To help researchers understand how these tools can uncover lncRNA function, this review discusses the considerations and influences of different parameters, (e.g., crosslinking reagents, oligonucleotide chemistry and hybridization conditions) and controls to avoid artifacts. By examining the application of these tools, this review will highlight the progress and pitfalls of studying lncRNAs using hybridization capture approaches.This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
Affiliation(s)
- Matthew D Simon
- Dept. of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06516, USA; Chemical Biology Institute, Yale West Campus, West Haven, CT, 06511, USA.
| |
Collapse
|
46
|
Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015; 16:166. [PMID: 26282267 PMCID: PMC4539689 DOI: 10.1186/s13059-015-0733-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
In female mammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy.
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anna Tattermusch
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip Avner
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy. .,Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, Paris, France.
| |
Collapse
|
47
|
Xist Exon 7 Contributes to the Stable Localization of Xist RNA on the Inactive X-Chromosome. PLoS Genet 2015; 11:e1005430. [PMID: 26244333 PMCID: PMC4526699 DOI: 10.1371/journal.pgen.1005430] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U. To balance gene expression from X-chromosomes between males and females, one of the two X-chromosomes is inactivated in female mammals. X-chromosome inactivation is a chromosome-wide epigenetic gene silencing mechanism regulated by long non-coding Xist RNA. Mouse Xist RNA is commonly organized into 7 exons, with the extensively studied and known important domains of Xist residing within exon 1. However, the function of exon 7 of Xist RNA, which is the second longest exon, remains poorly understood. Our objective was to clarify the role of this exon in X-inactivation through the use of Xist truncation mutant female ES cells. Here, we provide evidence that Xist exon 7 is required for the stable localization of Xist RNA and X-linked gene silencing on the inactive X-chromosome.
Collapse
|
48
|
Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells. Cell Rep 2015; 12:554-61. [PMID: 26190100 PMCID: PMC4530576 DOI: 10.1016/j.celrep.2015.06.067] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/23/2015] [Indexed: 01/21/2023] Open
Abstract
In mammals, the noncoding Xist RNA triggers transcriptional silencing of one of the two X chromosomes in female cells. Here, we report a genetic screen for silencing factors in X chromosome inactivation using haploid mouse embryonic stem cells (ESCs) that carry an engineered selectable reporter system. This system was able to identify several candidate factors that are genetically required for chromosomal repression by Xist. Among the list of candidates, we identify the RNA-binding protein Spen, the homolog of split ends. Independent validation through gene deletion in ESCs confirms that Spen is required for gene repression by Xist. However, Spen is not required for Xist RNA localization and the recruitment of chromatin modifications, including Polycomb protein Ezh2. The identification of Spen opens avenues for further investigation into the gene-silencing pathway of Xist and shows the usefulness of haploid ESCs for genetic screening of epigenetic pathways.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Andreas Postlmayr
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Remo Freimann
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabiana Arieti
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 62500, Czech Republic
| | - Stéphane Thore
- University of Bordeaux, European Institute for Chemistry and Biology (IECB), ARNA Laboratory, Bordeaux 33000, France; Institut National de la Sante et de la Recherche Medicale, INSERM, U869, ARNA Laboratory, Bordeaux 33000, France
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
49
|
Dixon-McDougall T, Brown C. The making of a Barr body: the mosaic of factors that eXIST on the mammalian inactive X chromosome. Biochem Cell Biol 2015; 94:56-70. [PMID: 26283003 DOI: 10.1139/bcb-2015-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.
Collapse
Affiliation(s)
- Thomas Dixon-McDougall
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
50
|
MacDonald WA, Sachani SS, White CR, Mann MRW. A role for chromatin topology in imprinted domain regulation. Biochem Cell Biol 2015. [PMID: 26222733 DOI: 10.1139/bcb-2015-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Collapse
Affiliation(s)
- William A MacDonald
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Saqib S Sachani
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Carlee R White
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Mellissa R W Mann
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| |
Collapse
|