1
|
Klaasen SJ, Kops GJPL. Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis. Cells 2022; 11:3564. [PMID: 36428993 PMCID: PMC9688425 DOI: 10.3390/cells11223564] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues.
Collapse
Affiliation(s)
- Sjoerd J. Klaasen
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Geert J. P. L. Kops
- Hubrecht Institute—KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
2
|
Abe T, Suzuki Y, Ikeya T, Hirota K. Targeting chromosome trisomy for chromosome editing. Sci Rep 2021; 11:18054. [PMID: 34508128 PMCID: PMC8433146 DOI: 10.1038/s41598-021-97580-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
A trisomy is a type of aneuploidy characterised by an additional chromosome. The additional chromosome theoretically accepts any kind of changes since it is not necessary for cellular proliferation. This advantage led us to apply two chromosome manipulation methods to autosomal trisomy in chicken DT40 cells. We first corrected chromosome 2 trisomy to disomy by employing counter-selection markers. Upon construction of cells carrying markers targeted in one of the trisomic chromosome 2s, cells that have lost markers integrated in chromosome 2 were subsequently selected. The loss of one of the chromosome 2s had little impacts on the proliferative capacity, indicating unsubstantial role of the additional chromosome 2 in DT40 cells. We next tested large-scale truncations of chromosome 2 to make a mini-chromosome for the assessment of chromosome stability by introducing telomere repeat sequences to delete most of p-arm or q-arm of chromosome 2. The obtained cell lines had 0.7 Mb mini-chromosome, and approximately 0.2% of mini-chromosome was lost per cell division in wild-type background while the rate of chromosome loss was significantly increased by the depletion of DDX11, a cohesin regulatory protein. Collectively, our findings propose that trisomic chromosomes are good targets to make unique artificial chromosomes.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| | - Yuya Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Teppei Ikeya
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| |
Collapse
|
3
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
4
|
Non-random Mis-segregation of Human Chromosomes. Cell Rep 2019; 23:3366-3380. [PMID: 29898405 PMCID: PMC6019738 DOI: 10.1016/j.celrep.2018.05.047] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
A common assumption is that human chromosomes carry equal chances of mis-segregation during compromised cell division. Human chromosomes vary in multiple parameters that might generate bias, but technological limitations have precluded a comprehensive analysis of chromosome-specific aneuploidy. Here, by imaging specific centromeres coupled with high-throughput single-cell analysis as well as single-cell sequencing, we show that aneuploidy occurs non-randomly following common treatments to elevate chromosome mis-segregation. Temporary spindle disruption leads to elevated mis-segregation and aneuploidy of a subset of chromosomes, particularly affecting chromosomes 1 and 2. Unexpectedly, we find that a period of mitotic delay weakens centromeric cohesion and promotes chromosome mis-segregation and that chromosomes 1 and 2 are particularly prone to suffer cohesion fatigue. Our findings demonstrate that inherent properties of individual chromosomes can bias chromosome mis-segregation and aneuploidy rates, with implications for studies on aneuploidy in human disease.
Collapse
|
5
|
Drpic D, Almeida AC, Aguiar P, Renda F, Damas J, Lewin HA, Larkin DM, Khodjakov A, Maiato H. Chromosome Segregation Is Biased by Kinetochore Size. Curr Biol 2018; 28:1344-1356.e5. [PMID: 29706521 PMCID: PMC5954971 DOI: 10.1016/j.cub.2018.03.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/02/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore—the critical chromosomal interface with spindle microtubules—impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity. Centromere/kinetochore functional layers scale proportionally with centromere size Kinetochore microtubule binding capacity scales with kinetochore size Chromosome congression and bi-orientation are biased by kinetochore size Error formation leading to chromosome missegregation is biased by kinetochore size
Collapse
Affiliation(s)
- Danica Drpic
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana C Almeida
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Paulo Aguiar
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Harris A Lewin
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
6
|
Yan X, Li C, Yang J, Wang L, Jiang C, Wei W. Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:700-713. [PMID: 28500683 DOI: 10.1111/tpj.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere-mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site-specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chen Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071001, China
| | - Jie Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lijun Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
- College of Life Science and Technology, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Xinxiang, 453003, China
| |
Collapse
|
7
|
Lee HS, Lee NCO, Kouprina N, Kim JH, Kagansky A, Bates S, Trepel JB, Pommier Y, Sackett D, Larionov V. Effects of Anticancer Drugs on Chromosome Instability and New Clinical Implications for Tumor-Suppressing Therapies. Cancer Res 2016; 76:902-11. [PMID: 26837770 PMCID: PMC4827779 DOI: 10.1158/0008-5472.can-15-1617] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Whole chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a nonessential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action, such as antimicrotubule activity, histone deacetylase inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses, were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top 10 drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alex Kagansky
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Susan Bates
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dan Sackett
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
8
|
Hagedorn C, Lipps HJ, Rupprecht S. The epigenetic regulation of autonomous replicons. Biomol Concepts 2015; 1:17-30. [PMID: 25961982 DOI: 10.1515/bmc.2010.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The discovery of autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in 1979 was considered a milestone in unraveling the regulation of replication in eukaryotic cells. However, shortly afterwards it became obvious that in Saccharomyces pombe and all other higher organisms ARSs were not sufficient to initiate independent replication. Understanding the mechanisms of replication is a major challenge in modern cell biology and is also a prerequisite to developing application-oriented autonomous replicons for gene therapeutic treatments. This review will focus on the development of non-viral episomal vectors, their use in gene therapeutic applications and our current knowledge about their epigenetic regulation.
Collapse
|
9
|
Cazaux B, Catalan J, Claude J, Britton-Davidian J. Non-random occurrence of Robertsonian translocations in the house mouse (Mus musculus domesticus): is it related to quantitative variation in the minor satellite? Cytogenet Genome Res 2014; 144:124-30. [PMID: 25401386 DOI: 10.1159/000368861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 11/19/2022] Open
Abstract
The house mouse, Mus musculus domesticus, shows extraordinary chromosomal diversity driven by fixation of Robertsonian (Rb) translocations. The high frequency of this rearrangement, which involves the centromeric regions, has been ascribed to the architecture of the satellite sequence (high quantity and homogeneity). This promotes centromere-related translocations through unequal recombination and gene conversion. A characteristic feature of Rb variation in this subspecies is the non-random contribution of different chromosomes to the translocation frequency, which, in turn, depends on the chromosome size. Here, the association between satellite quantity and Rb frequency was tested by PRINS of the minor satellite which is the sequence involved in the translocation breakpoints. Five chromosomes with different translocation frequencies were selected and analyzed among wild house mice from 8 European localities. Using a relative quantitative measurement per chromosome, the analysis detected a large variability in signal size most of which was observed between individuals and/or localities. The chromosomes differed significantly in the quantity of the minor satellite, but these differences were not correlated with their translocation frequency. However, the data uncovered a marginally significant correlation between the quantity of the minor satellite and chromosome size. The implications of these results on the evolution of the chromosomal architecture in the house mouse are discussed.
Collapse
Affiliation(s)
- Benoîte Cazaux
- Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier, France
| | | | | | | |
Collapse
|
10
|
Kumaran R, Yang SY, Leu JY. Characterization of chromosome stability in diploid, polyploid and hybrid yeast cells. PLoS One 2013; 8:e68094. [PMID: 23874507 PMCID: PMC3707968 DOI: 10.1371/journal.pone.0068094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).
Collapse
Affiliation(s)
- Rajaraman Kumaran
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Yow Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Lee HS, Lee NCO, Grimes BR, Samoshkin A, Kononenko AV, Bansal R, Masumoto H, Earnshaw WC, Kouprina N, Larionov V. A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer 2013; 13:252. [PMID: 23694679 PMCID: PMC3671967 DOI: 10.1186/1471-2407-13-252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022] Open
Abstract
Background Aneuploidy is a feature of most cancer cells that is often accompanied by an elevated rate of chromosome mis-segregation termed chromosome instability (CIN). While CIN can act as a driver of cancer genome evolution and tumor progression, recent findings point to the existence of a threshold level beyond which CIN becomes a barrier to tumor growth and therefore can be exploited therapeutically. Drugs known to increase CIN beyond the therapeutic threshold are currently few in number, and the clinical promise of targeting the CIN phenotype warrants new screening efforts. However, none of the existing methods, including the in vitro micronuclei (MNi) assay, developed to quantify CIN, is entirely satisfactory. Methods We have developed a new assay for measuring CIN. This quantitative assay for chromosome mis-segregation is based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Thus, cells that inherit the HAC display green fluorescence, while cells lacking the HAC do not. This allows the measurement of HAC loss rate by routine flow cytometry. Results Using the HAC-based chromosome loss assay, we have analyzed several well-known anti-mitotic, spindle-targeting compounds, all of which have been reported to induce micronuclei formation and chromosome loss. For each drug, the rate of HAC loss was accurately measured by flow cytometry as a proportion of non-fluorescent cells in the cell population which was verified by FISH analysis. Based on our estimates, despite their similar cytotoxicity, the analyzed drugs affect the rates of HAC mis-segregation during mitotic divisions differently. The highest rate of HAC mis-segregation was observed for the microtubule-stabilizing drugs, taxol and peloruside A. Conclusion Thus, this new and simple assay allows for a quick and efficient screen of hundreds of drugs to identify those affecting chromosome mis-segregation. It also allows ranking of compounds with the same or similar mechanism of action based on their effect on the rate of chromosome loss. The identification of new compounds that increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Comparative study of artificial chromosome centromeres in human and murine cells. Eur J Hum Genet 2013; 21:948-56. [PMID: 23403904 DOI: 10.1038/ejhg.2012.296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Human artificial chromosomes (HAC) are a valuable tool in the analysis of complex chromatin structures such as the human centromere because of their small size and relative simplicity compared with normal human chromosomes. This report includes a comprehensive study of the centromere and chromatin composition of HAC, expressing human genes, generated in human cells and transferred to murine cells. The analysis involved chromatin immuno-precipitation and immuno-FISH on metaphase chromosomes and chromatin fibres. In both the cell types, the HAC consisted of alphoid and non-alphoid DNA and were mainly euchromatic in composition, although a pericentromeric heterochromatic region was present on all the HAC. Fibre-FISH and chromatin immuno-precipitation data indicated that the position of the centromere differed between HAC in human cells and in murine cells. Our work highlights the importance and utilisation of HAC for understanding the epigenetic aspects of chromosome biology.
Collapse
|
13
|
Kouprina N, Samoshkin A, Erliandri I, Nakano M, Lee HS, Fu H, Iida Y, Aladjem M, Oshimura M, Masumoto H, Earnshaw WC, Larionov V. Organization of synthetic alphoid DNA array in human artificial chromosome (HAC) with a conditional centromere. ACS Synth Biol 2012; 1:590-601. [PMID: 23411994 DOI: 10.1021/sb3000436] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human artificial chromosomes (HACs) represent a novel promising episomal system for functional genomics, gene therapy, and synthetic biology. HACs are engineered from natural and synthetic alphoid DNA arrays upon transfection into human cells. The use of HACs for gene expression studies requires the knowledge of their structural organization. However, none of the de novo HACs constructed so far has been physically mapped in detail. Recently we constructed a synthetic alphoid(tetO)-HAC that was successfully used for expression of full-length genes to correct genetic deficiencies in human cells. The HAC can be easily eliminated from cell populations by inactivation of its conditional kinetochore. This unique feature provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This work describes organization of a megabase-size synthetic alphoid DNA array in the alphoid(tetO)-HAC that has been formed from a ~50 kb synthetic alphoid(tetO)-construct. Our analysis showed that this array represents a 1.1 Mb continuous sequence assembled from multiple copies of input DNA, a significant part of which was rearranged before assembling. The tandem and inverted alphoid DNA repeats in the HAC range in size from 25 to 150 kb. In addition, we demonstrated that the structure and functional domains of the HAC remains unchanged after several rounds of its transfer into different host cells. The knowledge of the alphoid(tetO)-HAC structure provides a tool to control HAC integrity during different manipulations. Our results also shed light on a mechanism for de novo HAC formation in human cells.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Alexander Samoshkin
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Indri Erliandri
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Megumi Nakano
- Laboratory
of Cell Engineering,
Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818,
Japan
| | - Hee-Sheung Lee
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Haiging Fu
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Yuichi Iida
- Department of Biomedical
Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Sciences, Tottori University, Nishi-cho, Yonago, Tottori, Japan
| | - Mirit Aladjem
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| | - Mitsuo Oshimura
- Department of Biomedical
Science,
Institute of Regenerative Medicine and Biofunction, Graduate School
of Medical Sciences, Tottori University, Nishi-cho, Yonago, Tottori, Japan
| | - Hiroshi Masumoto
- Laboratory
of Cell Engineering,
Department of Human Genome Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818,
Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell
Biology, University of Edinburgh, Edinburgh
EH9 3JR, Scotland
| | - Vladimir Larionov
- Laboratories of Molecular Pharmacology, National Cancer Institute, Bethesda, Maryland 20892,
United States
| |
Collapse
|
14
|
Stability of monocentric and dicentric ring minichromosomes in Arabidopsis. Chromosome Res 2011; 19:999-1012. [DOI: 10.1007/s10577-011-9250-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/07/2011] [Accepted: 10/10/2011] [Indexed: 10/15/2022]
|
15
|
Mandegar MA, Moralli D, Khoja S, Cowley S, Chan DYL, Yusuf M, Mukherjee S, Blundell MP, Volpi EV, Thrasher AJ, James W, Monaco ZL. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum Mol Genet 2011; 20:2905-13. [PMID: 21593218 DOI: 10.1093/hmg/ddr144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohammad A Mandegar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vasilyev SA, Timoshevsky VA, Lebedev IN. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410110141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Pérez-Luz S, Díaz-Nido J. Prospects for the use of artificial chromosomes and minichromosome-like episomes in gene therapy. J Biomed Biotechnol 2010; 2010:642804. [PMID: 20862363 PMCID: PMC2938438 DOI: 10.1155/2010/642804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/02/2010] [Accepted: 07/05/2010] [Indexed: 01/19/2023] Open
Abstract
Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
18
|
Mravinac B, Sullivan LL, Reeves JW, Yan CM, Kopf KS, Farr CJ, Schueler MG, Sullivan BA. Histone modifications within the human X centromere region. PLoS One 2009; 4:e6602. [PMID: 19672304 PMCID: PMC2719913 DOI: 10.1371/journal.pone.0006602] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/06/2009] [Indexed: 12/11/2022] Open
Abstract
Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite DNA that are separated from chromosome arms by unordered alpha satellite monomers and other repetitive elements. Complexities in assembling such large repetitive regions have limited detailed studies of centromeric chromatin organization. However, a genomic map of the human X centromere has provided new opportunities to explore genomic architecture of a complex locus. We used ChIP to examine the distribution of modified histones within centromere regions of multiple X chromosomes. Methylation of H3 at lysine 4 coincided with DXZ1 higher order alpha satellite, the site of CENP-A localization. Heterochromatic histone modifications were distributed across the 400–500 kb pericentromeric regions. The large arrays of alpha satellite and gamma satellite DNA were enriched for both euchromatic and heterochromatic modifications, implying that some pericentromeric repeats have multiple chromatin characteristics. Partial truncation of the X centromere resulted in reduction in the size of the CENP-A/Cenp-A domain and increased heterochromatic modifications in the flanking pericentromere. Although the deletion removed ∼1/3 of centromeric DNA, the ratio of CENP-A to alpha satellite array size was maintained in the same proportion, suggesting that a limited, but defined linear region of the centromeric DNA is necessary for kinetochore assembly. Our results indicate that the human X centromere contains multiple types of chromatin, is organized similarly to smaller eukaryotic centromeres, and responds to structural changes by expanding or contracting domains.
Collapse
Affiliation(s)
- Brankica Mravinac
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Lori L. Sullivan
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Jason W. Reeves
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Christopher M. Yan
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kristen S. Kopf
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Mary G. Schueler
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Beth A. Sullivan
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Expansión clónica y caracterización genómica del proceso de integración del virus linfotrópico humano tipo I en la leucemia/linfoma de células T en adultos. BIOMEDICA 2009. [DOI: 10.7705/biomedica.v29i2.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Moralli D, Chan DYL, Jefferson A, Volpi EV, Monaco ZL. HAC stability in murine cells is influenced by nuclear localization and chromatin organization. BMC Cell Biol 2009; 10:18. [PMID: 19267891 PMCID: PMC2674426 DOI: 10.1186/1471-2121-10-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA. RESULTS In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters. HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated. The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation. The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing. CONCLUSION This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease.
Collapse
Affiliation(s)
- Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Kinetochores can form and be maintained on DNA sequences that are normally non-centromeric. The existence of these so-called neo-centromeres has posed the problem as to the nature of the epigenetic mechanisms that maintain the centromere. Here we highlight results that indicate that the amount of CENP-A at human centromeres is tightly regulated. It is also known that kinetochore assembly requires sister chromatid cohesion at mitosis. We therefore suggest that separation or stretching between the sister chromatids at metaphase reciprocally determines the amount of centromere assembly in the subsequent interphase. This reciprocal relationship forms the basis of a negative feedback loop that could precisely control the amount of CENP-A and faithfully maintain the presence of a kinetochore over many cell divisions. We describe how the feedback loop would work, propose how it could be tested experimentally and suggest possible components of its mechanism.
Collapse
Affiliation(s)
- William R A Brown
- Institute of Genetics, School of Biology, Queen's Medical Centre, Nottingham, UK.
| | | |
Collapse
|
22
|
Mantzouratou A, Mania A, Apergi M, Laver S, Serhal P, Delhanty J. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier. Mol Cytogenet 2009; 2:3. [PMID: 19166580 PMCID: PMC2637284 DOI: 10.1186/1755-8166-2-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/23/2009] [Indexed: 11/21/2022] Open
Abstract
Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD) following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH) with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.
Collapse
Affiliation(s)
- Anna Mantzouratou
- UCL Centre for PGD, Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E-6HX, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Rancati G, Pavelka N, Fleharty B, Noll A, Allen R, Walton K, Perera A, Staehling-Hampton K, Seidel CW, Li R. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 2008; 135:879-93. [PMID: 19041751 PMCID: PMC2776776 DOI: 10.1016/j.cell.2008.09.039] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 07/08/2008] [Accepted: 09/17/2008] [Indexed: 11/25/2022]
Abstract
The ability to evolve is a fundamental feature of biological systems, but the mechanisms underlying this capacity and the evolutionary dynamics of conserved core processes remain elusive. We show that yeast cells deleted of MYO1, encoding the only myosin II normally required for cytokinesis, rapidly evolved divergent pathways to restore growth and cytokinesis. The evolved cytokinesis phenotypes correlated with specific changes in the transcriptome. Polyploidy and aneuploidy were common genetic alterations in the best evolved strains, and aneuploidy could account for gene expression changes due directly to altered chromosome stoichiometry as well as to downstream effects. The phenotypic effect of aneuploidy could be recapitulated with increased copy numbers of specific regulatory genes in myo1Delta cells. These results demonstrate the evolvability of even a well-conserved process and suggest that changes in chromosome stoichiometry provide a source of heritable variation driving the emergence of adaptive phenotypes when the cell division machinery is strongly perturbed.
Collapse
Affiliation(s)
- Giulia Rancati
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Norman Pavelka
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Brian Fleharty
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Aaron Noll
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Rhonda Allen
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Kendra Walton
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Karen Staehling-Hampton
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Chris W. Seidel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| | - Rong Li
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, U.S.A
| |
Collapse
|
24
|
Artificial chromosome formation in maize (Zea mays L.). Chromosoma 2008; 118:157-77. [DOI: 10.1007/s00412-008-0191-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/11/2022]
|
25
|
Rutkowska J, Badyaev AV. Review. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philos Trans R Soc Lond B Biol Sci 2008; 363:1675-86. [PMID: 18048292 PMCID: PMC2606724 DOI: 10.1098/rstb.2007.0006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species.
Collapse
Affiliation(s)
| | - Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of ArizonaTucson, AZ 85721, USA
| |
Collapse
|
26
|
Input DNA ratio determines copy number of the 33 kb Factor IX gene on de novo human artificial chromosomes. Mol Ther 2007; 16:315-23. [PMID: 18059371 DOI: 10.1038/sj.mt.6300361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Human artificial chromosomes (ACs) are non-integrating vectors that may be useful for gene therapy. They assemble in cultured cells following transfection of human centromeric alpha -satellite DNA and segregate efficiently alongside the host genome. In the present study, a 33 kilobase (kb) Factor IX (FIX) gene was incorporated into mitotically stable ACs in human HT1080 lung derived cells using co-transfection of a bacterial artificial chromosome (BAC) harboring synthetic alpha -satellite DNA and a P1 artificial chromosome(PAC) that spans the FIX locus. ACs were detected in >or=90% of chromosome spreads in 8 of 19 lines expanded from drug resistant colonies. FIX transgene copy number on ACs was determined by input DNA transfection ratios. Furthermore, a low level of FIX transcription was detected from ACs with multiple transgenes but not from those incorporating a single transgene, suggesting that reducing transgene number may limit misexpression. Their potential to segregate cross species was measured by transferring ACs into mouse and hamster cell lines using microcell-mediated chromosome transfer. Lines were obtained where ACs segregated efficiently. The stable segregation of ACs in rodent cells suggests that it should be possible to develop animal models to test the capacity of ACs to rescue FIX deficiency.
Collapse
|
27
|
Spence JM, Phua HH, Mills W, Carpenter AJ, Porter AC, Farr CJ. Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH-coated anaphase threads. J Cell Sci 2007; 120:3952-64. [PMID: 17956945 PMCID: PMC5500177 DOI: 10.1242/jcs.013730] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Topoisomerase II (topo II) is a major component of mitotic chromosomes, and its unique decatenating activity has been implicated in many aspects of chromosome dynamics, of which chromosome segregation is the most seriously affected by loss of topo II activity in living cells. There is considerable evidence that topo II plays a role at the centromere including: the centromere-specific accumulation of topo II protein; cytogenetic/molecular mapping of the catalytic activity of topo II to active centromeres; the influence of sumoylated topo II on sister centromere cohesion; and its involvement in the activation of a Mad2-dependent spindle checkpoint. By using a human cell line with a conditional-lethal mutation in the gene encoding DNA topoisomerase IIalpha, we find that depletion of topo IIalpha, while leading to a disorganised metaphase plate, does not have any overt effect on general assembly of kinetochores. Fluorescence in situ hybridisation suggested that centromeres segregate normally, most segregation errors being chromatin bridges involving longer chromosome arms. Strikingly, a linear human X centromere-based minichromosome also displayed a significantly increased rate of missegregation. This sensitivity to depletion of topo IIalpha might be linked to structural alterations within the centromere domain, as indicated by a significant shortening of the distance across metaphase sister centromeres and the abnormal persistence of PICH-coated connections between segregating chromatids.
Collapse
Affiliation(s)
- Jennifer M. Spence
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Hui Hui Phua
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Walter Mills
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| | - Adam J. Carpenter
- Haemostasis and Thrombosis Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, London W12 ONN UK
| | - Andrew C.G. Porter
- Department of Haematology, Faculty of Medicine, Imperial College, London W12 0NN UK
| | - Christine J. Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH UK
| |
Collapse
|
28
|
Yu W, Han F, Birchler JA. Engineered minichromosomes in plants. Curr Opin Biotechnol 2007; 18:425-31. [DOI: 10.1016/j.copbio.2007.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 02/02/2023]
|
29
|
Nanbo A, Sugden A, Sugden B. The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO J 2007; 26:4252-62. [PMID: 17853891 PMCID: PMC2000340 DOI: 10.1038/sj.emboj.7601853] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 08/15/2007] [Indexed: 02/05/2023] Open
Abstract
Epstein–Barr virus (EBV) is an exceptionally successful human viral pathogen maintained as a licensed, plasmid replicon in proliferating cells. We have measured the distributions of EBV-derived plasmids in single live cells throughout the cell cycle in the absence of selection and confirmed the measured rates of duplication and partitioning computationally and experimentally. These analyses have uncovered a striking, non-random partitioning for this minimalist plasmid replicon and revealed additional properties of it and its host cells: (1) 84% of the plasmids duplicate during each S phase; (2) all duplicated plasmids are spatially colocalized as pairs, a positioning that is coupled to their non-random partitioning; (3) each clone of cells requires a certain threshold number of plasmids per cell for its optimal growth under selection; (4) defects in plasmid synthesis and partitioning are balanced to yield wide distributions of plasmids in clonal populations of cells for which the plasmids provide a selective advantage. These properties of its plasmid replicon underlie EBV's success as a human pathogen.
Collapse
Affiliation(s)
- Asuka Nanbo
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
| | - Arthur Sugden
- Astronomy Department, Wesleyan University, Middletown, CT, USA
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706, USA. Tel.: +1 608 262 1116; Fax: +1 608 262 2824; E-mail:
| |
Collapse
|