Chaurasia S, Lehner CF. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes.
PLoS Genet 2018;
14:e1007372. [PMID:
29734336 PMCID:
PMC5957430 DOI:
10.1371/journal.pgen.1007372]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/17/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022] Open
Abstract
Sister kinetochores are connected to the same spindle pole during meiosis I and to opposite poles during meiosis II. The molecular mechanisms controlling the distinct behavior of sister kinetochores during the two meiotic divisions are poorly understood. To study kinetochore behavior during meiosis, we have optimized time lapse imaging with Drosophila spermatocytes, enabling kinetochore tracking with high temporal and spatial resolution through both meiotic divisions. The correct bipolar orientation of chromosomes within the spindle proceeds rapidly during both divisions. Stable bi-orientation of the last chromosome is achieved within ten minutes after the onset of kinetochore-microtubule interactions. Our analyses of mnm and tef mutants, where univalents instead of bivalents are present during meiosis I, indicate that the high efficiency of normal bi-orientation depends on pronounced stabilization of kinetochore attachments to spindle microtubules by the mechanical tension generated by spindle forces upon bi-orientation. Except for occasional brief separation episodes, sister kinetochores are so closely associated that they cannot be resolved individually by light microscopy during meiosis I, interkinesis and at the start of meiosis II. Permanent evident separation of sister kinetochores during M II depends on spindle forces resulting from bi-orientation. In mnm and tef mutants, sister kinetochore separation can be observed already during meiosis I in bi-oriented univalents. Interestingly, however, this sister kinetochore separation is delayed until the metaphase to anaphase transition and depends on the Fzy/Cdc20 activator of the anaphase-promoting complex/cyclosome. We propose that univalent bi-orientation in mnm and tef mutants exposes a release of sister kinetochore conjunction that occurs also during normal meiosis I in preparation for bi-orientation of dyads during meiosis II.
For production of oocytes and sperm, cells have to complete meiosis which includes two successive divisions. These divisions convert diploid cells with a maternal and a paternal copy of each chromosome into haploid cells with only one copy of each chromosome. Chromosome copy reduction requires regulation of sister kinetochore behavior during the meiotic divisions. Kinetochores are protein networks assembled at the start of divisions within the centromeric region of chromosomes. They provide attachment sites for spindle microtubules which in turn exert poleward pulling forces. During pre-meiotic S phase, each chromosome is duplicated into two closely associated sister chromatids. At the start of the first meiotic division, both sister chromatids together assemble only one functional kinetochore, permitting subsequent separation of paired homologous chromosomes to opposite spindle poles. In contrast, at the onset of the second meiotic division, each sister chromatid organizes its own kinetochore followed by separation of sister chromatids to opposite spindle poles. To analyze when and how sister kinetochores are individualized, we have improved time lapse imaging with Drosophila spermatocytes. Our analyses in normal and genetically altered spermatocytes suggest that the release of sister kinetochore conjunction occurs during the first meiotic division after activation of the anaphase promoting complex/cyclosome.
Collapse