1
|
Ning Y, Shang D, Xin H, Ni R, Wang Z, Zhen Y, Liu G, Xi M. Establishing of 3D-FISH on frozen section and its applying in chromosome territories analysis in Populus trichocarpa. PLANT CELL REPORTS 2024; 43:255. [PMID: 39375198 DOI: 10.1007/s00299-024-03342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Fluorescence in situ hybridization with frozen sections of root tips showed difference of chromosome territories distribution between autosome and sex-chromosome homologous pairs in Populus trichocarpa. The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biologic processes. Three-dimensional fluorescence in situ hybridization (3D-FISH) is a powerful tool for analyzing CTs, but its application in plants is limited. In this study, we established a 3D-FISH technique using frozen sections of Populus trichocarpa root tips, which was an improvement over the use of paraffin sections and enabled us to acquire good FISH signals. Using chromosome-specific oligo probes, we were able to analyze CTs in interphase nuclei in three dimensions. The distribution of chromosome pairs 17 and 19 in the 3D-preserved nuclei of P. trichocarpa root tip cells were analyzed and showed that the autosome pair 17 associated more often than sex chromosome 19. This research lays a foundation for further study of the spatial position of chromosomes in the nucleus and the relationship between gene expression and spatial localization of chromosomes in poplar.
Collapse
Affiliation(s)
- Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Daxin Shang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Runxin Ni
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Guangxin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Federico C, Brancato D, Bruno F, Galvano D, Caruso M, Saccone S. Robertsonian Translocation between Human Chromosomes 21 and 22, Inherited across Three Generations, without Any Phenotypic Effect. Genes (Basel) 2024; 15:722. [PMID: 38927657 PMCID: PMC11202415 DOI: 10.3390/genes15060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism. We serendipitously discovered a Robertsonian translocation between chromosome 21 and chromosome 22, which is inherited across three generations without any phenotypic effect, notably only in females. In situ hybridization with alpha-satellite DNAs revealed the presence of both centromeric sequences in the translocated chromosome. The reciprocal translocation resulted in a partial deletion of the short arm of both chromosomes 21, and 22, with the ribosomal RNA genes remaining present in the middle part of the new metacentric chromosome. The rearrangement did not cause alterations to the long arm. The spread of an asymptomatic heterozygous chromosomal polymorphism in a population can lead to mating between heterozygous individuals, potentially resulting in offspring with a homozygous chromosomal configuration for the anomaly they carry. This new karyotype may not produce phenotypic effects in the individual who presents it. The frequency of karyotypes with chromosomal rearrangements in asymptomatic heterozygous form in human populations is likely underestimated, and molecular karyotype by array Comparative Genomic Hybridization (array-CGH) analysis does not allow for the identification of this type of chromosomal anomaly, making classical cytogenetic analysis the preferred method for obtaining clear results on a karyotype carrying a balanced rearrangement.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| | - Daiana Galvano
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Mariella Caruso
- Cytogenetic Laboratory, A.O.U. Policlinico Vittorio Emanuele, 95124 Catania, Italy; (D.G.); (M.C.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (D.B.); (F.B.)
| |
Collapse
|
3
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
4
|
Das P, Shen T, McCord RP. Inferring chromosome radial organization from Hi-C data. BMC Bioinformatics 2020; 21:511. [PMID: 33167851 PMCID: PMC7654587 DOI: 10.1186/s12859-020-03841-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The nonrandom radial organization of eukaryotic chromosome territories (CTs) inside the nucleus plays an important role in nuclear functional compartmentalization. Increasingly, chromosome conformation capture (Hi-C) based approaches are being used to characterize the genome structure of many cell types and conditions. Computational methods to extract 3D arrangements of CTs from this type of pairwise contact data will thus increase our ability to analyze CT organization in a wider variety of biological situations. RESULTS A number of full-scale polymer models have successfully reconstructed the 3D structure of chromosome territories from Hi-C. To supplement such methods, we explore alternative, direct, and less computationally intensive approaches to capture radial CT organization from Hi-C data. We show that we can infer relative chromosome ordering using PCA on a thresholded inter-chromosomal contact matrix. We simulate an ensemble of possible CT arrangements using a force-directed network layout algorithm and propose an approach to integrate additional chromosome properties into our predictions. Our CT radial organization predictions have a high correlation with microscopy imaging data for various cell nucleus geometries (lymphoblastoid, skin fibroblast, and breast epithelial cells), and we can capture previously documented changes in senescent and progeria cells. CONCLUSIONS Our analysis approaches provide rapid and modular approaches to screen for alterations in CT organization across widely available Hi-C data. We demonstrate which stages of the approach can extract meaningful information, and also describe limitations of pairwise contacts alone to predict absolute 3D positions.
Collapse
Affiliation(s)
- Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| | - Rachel Patton McCord
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
5
|
Crosetto N, Bienko M. Radial Organization in the Mammalian Nucleus. Front Genet 2020; 11:33. [PMID: 32117447 PMCID: PMC7028756 DOI: 10.3389/fgene.2020.00033] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, most of the genetic material is contained within a highly specialized organelle-the nucleus. A large body of evidence indicates that, within the nucleus, chromatinized DNA is spatially organized at multiple length scales. The higher-order organization of chromatin is crucial for proper execution of multiple genome functions, including DNA replication and transcription. Here, we review our current knowledge on the spatial organization of chromatin in the nucleus of mammalian cells, focusing in particular on how chromatin is radially arranged with respect to the nuclear lamina. We then discuss the possible mechanisms by which the radial organization of chromatin in the cell nucleus is established. Lastly, we propose a unifying model of nuclear spatial organization, and suggest novel approaches to test it.
Collapse
Affiliation(s)
| | - Magda Bienko
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
George P, Kinney NA, Liang J, Onufriev AV, Sharakhov IV. Three-dimensional Organization of Polytene Chromosomes in Somatic and Germline Tissues of Malaria Mosquitoes. Cells 2020; 9:cells9020339. [PMID: 32024176 PMCID: PMC7072178 DOI: 10.3390/cells9020339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Spatial organization of chromosome territories and interactions between interphase chromosomes themselves, as well as with the nuclear periphery, play important roles in epigenetic regulation of the genome function. However, the interplay between inter-chromosomal contacts and chromosome-nuclear envelope attachments in an organism’s development is not well-understood. To address this question, we conducted microscopic analyses of the three-dimensional chromosome organization in malaria mosquitoes. We employed multi-colored oligonucleotide painting probes, spaced 1 Mb apart along the euchromatin, to quantitatively study chromosome territories in larval salivary gland cells and adult ovarian nurse cells of Anopheles gambiae, An. coluzzii, and An. merus. We found that the X chromosome territory has a significantly smaller volume and is more compact than the autosomal arm territories. The number of inter-chromosomal, and the percentage of the chromosome–nuclear envelope, contacts were conserved among the species within the same cell type. However, the percentage of chromosome regions located at the nuclear periphery was typically higher, while the number of inter-chromosomal contacts was lower, in salivary gland cells than in ovarian nurse cells. The inverse correlation was considerably stronger for the autosomes. Consistent with previous theoretical arguments, our data indicate that, at the genome-wide level, there is an inverse relationship between chromosome-nuclear envelope attachments and chromosome–chromosome interactions, which is a key feature of the cell type-specific nuclear architecture.
Collapse
Affiliation(s)
- Phillip George
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA; (P.G.); (J.L.)
| | - Nicholas A. Kinney
- Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA; (N.A.K.); (A.V.O.)
| | - Jiangtao Liang
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA; (P.G.); (J.L.)
| | - Alexey V. Onufriev
- Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA; (N.A.K.); (A.V.O.)
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA; (P.G.); (J.L.)
- Genomics, Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, VA 24061, USA; (N.A.K.); (A.V.O.)
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russian Federation
- Correspondence: ; Tel.: +1-540-231-7316
| |
Collapse
|
7
|
Spatial organization of chromosome territories in the interphase nucleus of trisomy 21 cells. Chromosoma 2017; 127:247-259. [PMID: 29238858 DOI: 10.1007/s00412-017-0653-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022]
Abstract
In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.
Collapse
|
8
|
Genomic properties of chromosomal bands are linked to evolutionary rearrangements and new centromere formation in primates. Chromosome Res 2017; 25:261-276. [PMID: 28717965 DOI: 10.1007/s10577-017-9560-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
Chromosomal rearrangements in humans are largely related to pathological conditions, and phenotypic effects are also linked to alterations in the expression profile following nuclear relocation of genes between functionally different compartments, generally occupying the periphery or the inner part of the cell nuclei. On the other hand, during evolution, chromosomal rearrangements may occur apparently without damaging phenotypic effects and are visible in currently phylogenetically related species. To increase our insight into chromosomal reorganisation in the cell nucleus, we analysed 18 chromosomal regions endowed with different genomic properties in cell lines derived from eight primate species covering the entire evolutionary tree. We show that homologous loci, in spite of their evolutionary relocation along the chromosomes, generally remain localised to the same functional compartment of the cell nuclei. We conclude that evolutionarily successful chromosomal rearrangements are those that leave the nuclear position of the regions involved unchanged. On the contrary, in pathological situations, the effect typically observed is on gene structure alteration or gene nuclear reposition. Moreover, our data indicate that new centromere formation could potentially occur everywhere in the chromosomes, but only those emerging in very GC-poor/gene-poor regions, generally located in the nuclear periphery, have a high probability of being retained through evolution. This suggests that, in the cell nucleus of related species, evolutionary chromosomal reshufflings or new centromere formation does not alter the functionality of the regions involved or the interactions between different loci, thus preserving the expression pattern of orthologous genes.
Collapse
|
9
|
Voldgorn YI, Adilgereeva EP, Nekrasov ED, Lavrov AV. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells. PLoS One 2015; 10:e0118350. [PMID: 25775427 PMCID: PMC4361746 DOI: 10.1371/journal.pone.0118350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/14/2015] [Indexed: 12/25/2022] Open
Abstract
Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.
Collapse
Affiliation(s)
- Yana I. Voldgorn
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
- State Budgetary Educational Institution of Higher Professional Education “Russian National Research Medical University named after N.I. Pirogov” of Ministry of Health of the Russian Federation, Russia, 117997, Moscow, Ostrovityanova str., 1
| | - Elmira P. Adilgereeva
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
| | - Evgeny D. Nekrasov
- Moscow Institute of Physics and Technology (State University), Russia, 141700, Moscow Region, Dolgoprudny, Institutskiy per., 9
| | - Alexander V. Lavrov
- Federal State Budgetary Institution «Research Centre for Medical Genetics» of the Russian Academy of Medical Sciences, Russia, 115478, Moscow, Moskvorechie, 1
- State Budgetary Educational Institution of Higher Professional Education “Russian National Research Medical University named after N.I. Pirogov” of Ministry of Health of the Russian Federation, Russia, 117997, Moscow, Ostrovityanova str., 1
- * E-mail:
| |
Collapse
|
10
|
Farré M, Robinson TJ, Ruiz-Herrera A. An Integrative Breakage Model of genome architecture, reshuffling and evolution: The Integrative Breakage Model of genome evolution, a novel multidisciplinary hypothesis for the study of genome plasticity. Bioessays 2015; 37:479-88. [PMID: 25739389 DOI: 10.1002/bies.201400174] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/23/2022]
Abstract
Our understanding of genomic reorganization, the mechanics of genomic transmission to offspring during germ line formation, and how these structural changes contribute to the speciation process, and genetic disease is far from complete. Earlier attempts to understand the mechanism(s) and constraints that govern genome remodeling suffered from being too narrowly focused, and failed to provide a unified and encompassing view of how genomes are organized and regulated inside cells. Here, we propose a new multidisciplinary Integrative Breakage Model for the study of genome evolution. The analysis of the high-level structural organization of genomes (nucleome), together with the functional constrains that accompany genome reshuffling, provide insights into the origin and plasticity of genome organization that may assist with the detection and isolation of therapeutic targets for the treatment of complex human disorders.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Barcelona, Spain
| | | | | |
Collapse
|
11
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Gaile D, Berezney R. Wide-scale alterations in interchromosomal organization in breast cancer cells: defining a network of interacting chromosomes. Hum Mol Genet 2014; 23:5133-46. [PMID: 24833717 DOI: 10.1093/hmg/ddu237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interchromosomal spatial positionings of a subset of human chromosomes was examined in the human breast cell line MCF10A (10A) and its malignant counterpart MCF10CA1a (CA1a). The nine chromosomes selected (#1, 4, 11, 12, 15, 16, 18, 21 and X) cover a wide range in size and gene density and compose ∼40% of the total human genome. Radial positioning of the chromosome territories (CT) was size dependent with certain of the CT more peripheral in CA1a. Each CT was in close proximity (interaction) with a similar number of other CT except the inactive CTXi. It had lower levels of interchromosomal partners in 10A which increased strikingly in CA1a. Major alterations from 10A to CA1a were detected in the pairwise interaction profiles which were subdivided into five types of altered interaction profiles: overall increase, overall decrease, switching from 1 to ≥2, vice versa or no change. A global data mining program termed the chromatic median calculated the most probable overall association network for the entire subset of CT. This interchromosomal network was drastically altered in CA1a with only 1 of 20 shared connections. We conclude that CT undergo multiple and preferred interactions with other CT in the cell nucleus and form preferred-albeit probabilistic-interchromosomal networks. This network of interactions is highly altered in malignant human breast cells. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program of these malignant cancer cells.
Collapse
Affiliation(s)
| | - Branislav Stojkovic
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Hu Ding
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jinhui Xu
- Department of Computer Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Daniel Gaile
- Department of Biostatistics, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
12
|
Foster HA, Griffin DK, Bridger JM. Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues. BMC Cell Biol 2012; 13:30. [PMID: 23151271 PMCID: PMC3499214 DOI: 10.1186/1471-2121-13-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 09/09/2011] [Indexed: 01/18/2023] Open
Abstract
Background In interphase nuclei of a wide range of species chromosomes are organised into their own specific locations termed territories. These chromosome territories are non-randomly positioned in nuclei which is believed to be related to a spatial aspect of regulatory control over gene expression. In this study we have adopted the pig as a model in which to study interphase chromosome positioning and follows on from other studies from our group of using pig cells and tissues to study interphase genome re-positioning during differentiation. The pig is an important model organism both economically and as a closely related species to study human disease models. This is why great efforts have been made to accomplish the full genome sequence in the last decade. Results This study has positioned most of the porcine chromosomes in in vitro cultured adult and embryonic fibroblasts, early passage stromal derived mesenchymal stem cells and lymphocytes. The study is further expanded to position four chromosomes in ex vivo tissue derived from pig kidney, lung and brain. Conclusions It was concluded that porcine chromosomes are also non-randomly positioned within interphase nuclei with few major differences in chromosome position in interphase nuclei between different cell and tissue types. There were also no differences between preferred nuclear location of chromosomes in in vitro cultured cells as compared to cells in tissue sections. Using a number of analyses to ascertain by what criteria porcine chromosomes were positioned in interphase nuclei; we found a correlation with DNA content.
Collapse
Affiliation(s)
- Helen A Foster
- Laboratory of Genomic and Nuclear Health, Centre for Cell and Chromosome Biology, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, West London UB8 3PH.
| | | | | |
Collapse
|
13
|
Hierarchical radial and polar organisation of chromosomes in human sperm. Chromosome Res 2012; 20:875-87. [DOI: 10.1007/s10577-012-9323-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 01/06/2023]
|
14
|
Heride C, Ricoul M, Kiêu K, von Hase J, Guillemot V, Cremer C, Dubrana K, Sabatier L. Distance between homologous chromosomes results from chromosome positioning constraints. J Cell Sci 2010; 123:4063-75. [DOI: 10.1242/jcs.066498] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.
Collapse
Affiliation(s)
- Claire Heride
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Michelle Ricoul
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Kien Kiêu
- UR 341 Mathématiques et Informatique Appliquées, INRA, 78 350 Jouy-en-Josas, France
| | - Johann von Hase
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Vincent Guillemot
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Commissariat à l'Energie Atomique, 91 057 Evry, France
| | - Christoph Cremer
- Kirchhoff Institute for Physics, University of Heidelberg, 69 120 Heidelberg, Germany
| | - Karine Dubrana
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| | - Laure Sabatier
- Laboratoire de Radiobiologie et d'Oncologie (LRO), Commissariat à l'Energie Atomique, 92 265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
15
|
Williams A, Spilianakis CG, Flavell RA. Interchromosomal association and gene regulation in trans. Trends Genet 2010; 26:188-97. [PMID: 20236724 PMCID: PMC2865229 DOI: 10.1016/j.tig.2010.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/12/2010] [Accepted: 01/21/2010] [Indexed: 01/18/2023]
Abstract
The nucleus is an ordered three-dimensional entity, and organization of the genome within the nuclear space might have implications for orchestrating gene expression. Recent technological developments have revealed that chromatin is folded into loops bringing distal regulatory elements into intimate contact with the genes that they regulate. Such intrachromosomal contacts appear to be a general mechanism of enhancer-promoter communication in cis. Tantalizing evidence is emerging that regulatory elements might have the capacity to act in trans to regulate genes on other chromosomes. However, unequivocal data required to prove that interchromosomal gene regulation truly represents another level of control within the nucleus is lacking, and this concept remains highly contentious. Such controversy emphasizes that our current understanding of the mechanisms that govern gene expression are far from complete.
Collapse
Affiliation(s)
- Adam Williams
- Department of Immunobiology, Yale University School of Medicine and The Howard Hughes Medical Institute, 300 Cedar street, TAC S-569, New Haven, CT 06520
| | - Charalampos G. Spilianakis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Nikolaou Plastira 100, GR 70013, Heraklion, Crete, Greece
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine and The Howard Hughes Medical Institute, 300 Cedar street, TAC S-569, New Haven, CT 06520
- Corresponding author: Department of Immunobiology, Yale University School of Medicine, 300 Cedar St. TAC S-579, New Haven, CT 06520, Phone: (203) 737-2216; Fax: (203) 737-2958,
| |
Collapse
|
16
|
Mehta IS, Amira M, Harvey AJ, Bridger JM. Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 2010; 11:R5. [PMID: 20070886 PMCID: PMC2847717 DOI: 10.1186/gb-2010-11-1-r5] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/23/2009] [Accepted: 01/13/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Radial chromosome positioning in interphase nuclei is nonrandom and can alter according to developmental, differentiation, proliferation, or disease status. However, it is not yet clear when and how chromosome repositioning is elicited. RESULTS By investigating the positioning of all human chromosomes in primary fibroblasts that have left the proliferative cell cycle, we have demonstrated that in cells made quiescent by reversible growth arrest, chromosome positioning is altered considerably. We found that with the removal of serum from the culture medium, chromosome repositioning took less than 15 minutes, required energy and was inhibited by drugs affecting the polymerization of myosin and actin. We also observed that when cells became quiescent, the nuclear distribution of nuclear myosin 1 beta was dramatically different from that in proliferating cells. If we suppressed the expression of nuclear myosin 1 beta by using RNA-interference procedures, the movement of chromosomes after 15 minutes in low serum was inhibited. When high serum was restored to the serum-starved cultures, chromosome repositioning was evident only after 24 to 36 hours, and this coincided with a return to a proliferating distribution of nuclear myosin 1 beta. CONCLUSIONS These findings demonstrate that genome organization in interphase nuclei is altered considerably when cells leave the proliferative cell cycle and that repositioning of chromosomes relies on efficient functioning of an active nuclear motor complex that contains nuclear myosin 1 beta.
Collapse
Affiliation(s)
- Ishita S Mehta
- Centre for Cell and Chromosome Biology, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Kingston Lane, Uxbridge, UB8 3PH, UK.
| | | | | | | |
Collapse
|
17
|
Zeitz MJ, Mukherjee L, Bhattacharya S, Xu J, Berezney R. A probabilistic model for the arrangement of a subset of human chromosome territories in WI38 human fibroblasts. J Cell Physiol 2009; 221:120-9. [PMID: 19507193 DOI: 10.1002/jcp.21842] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is growing evidence that chromosome territories have a probabilistic non-random arrangement within the cell nucleus of mammalian cells. Other than their radial positioning, however, our knowledge of the degree and specificity of chromosome territory associations is predominantly limited to studies of pair-wise associations. In this study we have investigated the association profiles of eight human chromosome pairs (numbers 1, 2, 3, 4, 6, 7, 8, 9) in the cell nuclei of G(0)-arrested WI38 diploid lung fibroblasts. Associations between heterologous chromosome combinations ranged from 52% to 78% while the homologous chromosome pairs had much lower levels of association (3-25%). A geometric computational method termed the Generalized Median Graph enabled identification of the most probable arrangement of these eight chromosome pairs. Approximately 41% of the predicted associations are present in any given nucleus. The association levels of several chromosome pairs were very similar in a series of lung fibroblast cell lines but strikingly different in skin and colon derived fibroblast cells. We conclude that a large subset of human chromosomes has a preferred probabilistic arrangement in WI38 cells and that the resulting chromosomal associations show tissue origin specificity.
Collapse
Affiliation(s)
- Michael J Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
18
|
Dynamic changes of territories 17 and 18 during EBV-infection of human lymphocytes. Mol Biol Rep 2009; 37:2347-54. [PMID: 19685159 DOI: 10.1007/s11033-009-9740-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Interphase chromosomes form distinct spatial domains called chromosome territories (CTs). The arrangement of CTs is non-random and correlated with cellular processes such as differentiation. The purpose of this study is to provide some behavior information of CTs during lymphocyte EBV-infection, which is thought to be a general extra-biological model. Three-dimensional fluorescence in situ hybridization (3D-FISH) was performed on human lymphocytes every 24 h over 96 h periods in EBV-infection. Chromosomes 17 and 18 were selected as target territories for similar size and different gene density. The data indicate that the radial position of territories 17 was altered with time, whereas territories 18 showed relative stable localization. The relative CT volume of CTs 18 to 17 also changed with infection. Our study is the first to examine the timely changes of chromatin positioning and folding in EBV-lymphocyte infection. Dynamic changes in position and folding status of target chromosomes reflected an impact of EBV infection on genome stability.
Collapse
|
19
|
Patrushev LI, Minkevich IG. The problem of the eukaryotic genome size. BIOCHEMISTRY (MOSCOW) 2009; 73:1519-52. [PMID: 19216716 DOI: 10.1134/s0006297908130117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.
Collapse
Affiliation(s)
- L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | |
Collapse
|
20
|
Babu MM, Janga SC, de Santiago I, Pombo A. Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 2008; 18:571-82. [PMID: 19007886 DOI: 10.1016/j.gde.2008.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 12/11/2022]
Abstract
Recent advances in molecular techniques and high-resolution imaging are beginning to provide exciting insights into the higher order chromatin organization within the cell nucleus and its influence on eukaryotic gene regulation. This improved understanding of gene regulation also raises fundamental questions about how spatial features might have constrained the organization of genes on eukaryotic chromosomes and how mutations that affect these processes might contribute to disease conditions. In this review, we discuss recent studies that highlight the role of spatial components in gene regulation and their impact on genome evolution. We then address implications for human diseases and outline new directions for future research.
Collapse
Affiliation(s)
- M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | |
Collapse
|
21
|
Meaburn KJ, Newbold RF, Bridger JM. Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 2008; 117:579-91. [PMID: 18651158 DOI: 10.1007/s00412-008-0175-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/06/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
|
22
|
Sengupta K, Camps J, Mathews P, Barenboim-Stapleton L, Nguyen QT, Difilippantonio MJ, Ried T. Position of human chromosomes is conserved in mouse nuclei indicating a species-independent mechanism for maintaining genome organization. Chromosoma 2008; 117:499-509. [PMID: 18563425 DOI: 10.1007/s00412-008-0171-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 11/25/2022]
Abstract
The nonrandom positioning of chromosome territories in eukaryotic cells is largely correlated with gene density and is conserved throughout evolution. Gene-rich chromosomes are predominantly central, while gene-poor chromosomes are peripherally localized in interphase nuclei. We previously demonstrated that artificially introduced human chromosomes assume a position equivalent to their endogenous homologues in the diploid colon cancer cell line DLD-1. These chromosomal aneuploidies result in a significant increase in transcript levels, suggesting a relationship between genomic copy number, gene expression, and chromosome position. We previously proposed that each chromosome is marked by a "zip code" that determines its nonrandom position in the nucleus. In this paper, we investigated (1) whether mouse nuclei recognize such determinants of nuclear position on human chromosomes to facilitate their distinct partitioning and (2) if chromosome positioning and transcriptional activity remain coupled under these trans-species conditions. Using three-dimensional fluorescence in situ hybridization, confocal microscopy, and gene expression profiling, we show (1) that gene-poor and gene-rich human chromosomes maintain their divergent but conserved positions in mouse-human hybrid nuclei and (2) that a foreign human chromosome is actively transcribed in mouse nuclei. Our results suggest a species-independent conserved mechanism for the nonrandom positioning of chromosomes in the three-dimensional interphase nucleus.
Collapse
Affiliation(s)
- Kundan Sengupta
- Section of Cancer Genomics, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 50 South Drive, Rm 1408, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Brianna Caddle L, Grant JL, Szatkiewicz J, van Hase J, Shirley BJ, Bewersdorf J, Cremer C, Arneodo A, Khalil A, Mills KD. Chromosome neighborhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells. Chromosome Res 2007; 15:1061-73. [PMID: 18060570 DOI: 10.1007/s10577-007-1181-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 01/05/2023]
Abstract
Radiation exposure is an occupational hazard for military personnel, some health care professionals, airport security screeners, and medical patients, with some individuals at risk for acute, high-dose exposures. Therefore, the biological effects of radiation, especially the potential for chromosome damage, are major occupational and health concerns. However, the biophysical mechanisms of chromosome instability subsequent to radiation-induced DNA damage are poorly understood. It is clear that interphase chromosomes occupy discrete structural and functional subnuclear domains, termed chromosome territories (CT), which may be organized into 'neighborhoods' comprising groups of specific CTs. We directly evaluated the relationship between chromosome positioning, neighborhood composition, and translocation partner choice in primary lymphocytes, using a cell-based system in which we could induce multiple, concentrated DNA breaks via high-dose irradiation. We critically evaluated mis-rejoining profiles and tested whether breaks occurring nearby were more likely to fuse than breaks occurring at a distance. We show that CT neighborhoods comprise heterologous chromosomes, within which inter-CT distances directly relate to translocation partner choice. These findings demonstrate that interphase chromosome arrangement is a principal factor in genomic instability outcomes in primary lymphocytes, providing a structural context for understanding the biological effects of radiation exposure, and the molecular etiology of tumor-specific translocation patterns.
Collapse
|
24
|
Berr A, Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 2007; 176:853-63. [PMID: 17409060 PMCID: PMC1894613 DOI: 10.1534/genetics.107.073270] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/15/2007] [Indexed: 12/21/2022] Open
Abstract
Whole-mount fluorescence in situ hybridization (FISH) was applied to Arabidopsis thaliana seedlings to determine the three-dimensional (3D) interphase chromosome territory (CT) arrangement and heterochromatin location within the positional context of entire tissues or in particular cell types of morphologically well-preserved seedlings. The interphase chromosome arrangement was found to be similar between all inspected meristematic and differentiated root and shoot cells, indicating a lack of a gross reorganization during differentiation. The predominantly random CT arrangement (except for a more frequent association of the homologous chromosomes bearing a nucleolus organizer) and the peripheric location of centromeric heterochromatin were as previously observed for flow-sorted nuclei, but centromeres tend to fuse more often in nonendoreduplicating cells and NORs in differentiated cells. After mitosis, sister nuclei revealed a symmetric arrangement of homologous CTs waning with the progress of the cell cycle or in the course of differentiation. Thus, the interphase chromosome arrangement in A. thaliana nuclei seems to be constrained mainly by morphological features such as nuclear shape, presence or absence of a nucleolus organizer on chromosomes, nucleolar volume, and/or endopolyploidy level.
Collapse
Affiliation(s)
| | - Ingo Schubert
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| |
Collapse
|
25
|
Neusser M, Schubel V, Koch A, Cremer T, Müller S. Evolutionarily conserved, cell type and species-specific higher order chromatin arrangements in interphase nuclei of primates. Chromosoma 2007; 116:307-20. [PMID: 17318634 DOI: 10.1007/s00412-007-0099-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/03/2007] [Accepted: 01/13/2007] [Indexed: 01/25/2023]
Abstract
Several studies demonstrated a gene-density-correlated radial organization of chromosome territories (CTs) in spherically shaped nuclei of human lymphocytes or lymphoblastoid cells, while CT arrangements in flat-ellipsoidal nuclei of human fibroblasts are affected by both gene density and chromosome size. In the present study, we performed fluorescence in situ hybridization (FISH) experiments to three-dimensionally preserved nuclei (3D-FISH) from human and nonhuman primate cultured lymphoblastoid cells and fibroblasts. We investigated apes, Old, and New World monkeys showing either evolutionarily conserved karyotypes, multiple translocations, fusions, or serial fissions. Our goal was to test whether cell type specific differences of higher order chromatin arrangements are evolutionarily conserved in different primate lineages. Whole genome painting experiments and further detailed analyses of individual chromosomes indicate a gene-density-correlated higher order organization of chromatin in lymphoblastoid cell nuclei of all studied primate species, despite evolutionary chromosome reshuffling. In contrast, in primate fibroblast nuclei evolutionary translocations, fissions and fusions resulted in positional shifts of orthologous chromosome segments, thus arguing against a functional role of chromosome size-dependent spatial chromatin arrangements and for geometrical constraints in flat-ellipsoidal fibroblast nuclei. Notably, in both cell types, regions of rearranged chromosomes with distinct differences in gene density showed polarized arrangements with the more gene-dense segment oriented towards the nuclear interior. Our results indicate that nonrandom breakage and rejoining of preferentially gene-dense chromosomes or chromosome segments may have occurred during evolution.
Collapse
Affiliation(s)
- Michaela Neusser
- Department Biology II, Human Genetics, Ludwig-Maximilians-University, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
26
|
Chromosome organization: new facts, new models. Trends Cell Biol 2007; 17:127-34. [PMID: 17197184 DOI: 10.1016/j.tcb.2006.12.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/19/2006] [Indexed: 02/05/2023]
Abstract
The study of nuclear organization has radically changed the way we envision gene regulation, imposing a paradigm shift from a seemingly featureless nucleus to a highly compartmentalized and complex organelle. The positioning of genes, regulatory sequences and transcription factors in relation to each other and to landmarks in the nucleus, such as nuclear bodies and the lamina, is important in determining which genes are transcribed at any one time. Investigating chromatin organization during interphase is therefore essential to the understanding of gene expression. The recent discovery of interactions between distal chromatin segments that occur within the same chromosome or across different chromosomes, and that have a role in transcription regulation, suggests a re-evaluation of current models of chromosome organization and the development of new ones.
Collapse
|